14,966 research outputs found

    Drawing Binary Tanglegrams: An Experimental Evaluation

    Full text link
    A binary tanglegram is a pair of binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example in phylogenetics or software engineering, it is required that the individual trees are drawn crossing-free. A natural optimization problem, denoted tanglegram layout problem, is thus to minimize the number of crossings between inter-tree edges. The tanglegram layout problem is NP-hard and is currently considered both in application domains and theory. In this paper we present an experimental comparison of a recursive algorithm of Buchin et al., our variant of their algorithm, the algorithm hierarchy sort of Holten and van Wijk, and an integer quadratic program that yields optimal solutions.Comment: see http://www.siam.org/proceedings/alenex/2009/alx09_011_nollenburgm.pd

    Which point sets admit a k-angulation?

    Get PDF
    For k >= 3, a k-angulation is a 2-connected plane graph in which every internal face is a k-gon. We say that a point set P admits a plane graph G if there is a straight-line drawing of G that maps V(G) onto P and has the same facial cycles and outer face as G. We investigate the conditions under which a point set P admits a k-angulation and find that, for sets containing at least 2k^2 points, the only obstructions are those that follow from Euler's formula.Comment: 13 pages, 7 figure

    Improved Algorithms for the Point-Set Embeddability problem for Plane 3-Trees

    Full text link
    In the point set embeddability problem, we are given a plane graph GG with nn vertices and a point set SS with nn points. Now the goal is to answer the question whether there exists a straight-line drawing of GG such that each vertex is represented as a distinct point of SS as well as to provide an embedding if one does exist. Recently, in \cite{DBLP:conf/gd/NishatMR10}, a complete characterization for this problem on a special class of graphs known as the plane 3-trees was presented along with an efficient algorithm to solve the problem. In this paper, we use the same characterization to devise an improved algorithm for the same problem. Much of the efficiency we achieve comes from clever uses of the triangular range search technique. We also study a generalized version of the problem and present improved algorithms for this version of the problem as well

    Improved Bounds for Drawing Trees on Fixed Points with L-shaped Edges

    Full text link
    Let TT be an nn-node tree of maximum degree 4, and let PP be a set of nn points in the plane with no two points on the same horizontal or vertical line. It is an open question whether TT always has a planar drawing on PP such that each edge is drawn as an orthogonal path with one bend (an "L-shaped" edge). By giving new methods for drawing trees, we improve the bounds on the size of the point set PP for which such drawings are possible to: O(n1.55)O(n^{1.55}) for maximum degree 4 trees; O(n1.22)O(n^{1.22}) for maximum degree 3 (binary) trees; and O(n1.142)O(n^{1.142}) for perfect binary trees. Drawing ordered trees with L-shaped edges is harder---we give an example that cannot be done and a bound of O(nlogn)O(n \log n) points for L-shaped drawings of ordered caterpillars, which contrasts with the known linear bound for unordered caterpillars.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Orderly Spanning Trees with Applications

    Full text link
    We introduce and study the {\em orderly spanning trees} of plane graphs. This algorithmic tool generalizes {\em canonical orderings}, which exist only for triconnected plane graphs. Although not every plane graph admits an orderly spanning tree, we provide an algorithm to compute an {\em orderly pair} for any connected planar graph GG, consisting of a plane graph HH of GG, and an orderly spanning tree of HH. We also present several applications of orderly spanning trees: (1) a new constructive proof for Schnyder's Realizer Theorem, (2) the first area-optimal 2-visibility drawing of GG, and (3) the best known encodings of GG with O(1)-time query support. All algorithms in this paper run in linear time.Comment: 25 pages, 7 figures, A preliminary version appeared in Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), Washington D.C., USA, January 7-9, 2001, pp. 506-51

    Squarepants in a Tree: Sum of Subtree Clustering and Hyperbolic Pants Decomposition

    Full text link
    We provide efficient constant factor approximation algorithms for the problems of finding a hierarchical clustering of a point set in any metric space, minimizing the sum of minimimum spanning tree lengths within each cluster, and in the hyperbolic or Euclidean planes, minimizing the sum of cluster perimeters. Our algorithms for the hyperbolic and Euclidean planes can also be used to provide a pants decomposition, that is, a set of disjoint simple closed curves partitioning the plane minus the input points into subsets with exactly three boundary components, with approximately minimum total length. In the Euclidean case, these curves are squares; in the hyperbolic case, they combine our Euclidean square pants decomposition with our tree clustering method for general metric spaces.Comment: 22 pages, 14 figures. This version replaces the proof of what is now Lemma 5.2, as the previous proof was erroneou

    Proximity Drawings of High-Degree Trees

    Full text link
    A drawing of a given (abstract) tree that is a minimum spanning tree of the vertex set is considered aesthetically pleasing. However, such a drawing can only exist if the tree has maximum degree at most 6. What can be said for trees of higher degree? We approach this question by supposing that a partition or covering of the tree by subtrees of bounded degree is given. Then we show that if the partition or covering satisfies some natural properties, then there is a drawing of the entire tree such that each of the given subtrees is drawn as a minimum spanning tree of its vertex set

    Visualizing Co-Phylogenetic Reconciliations

    Get PDF
    We introduce a hybrid metaphor for the visualization of the reconciliations of co-phylogenetic trees, that are mappings among the nodes of two trees. The typical application is the visualization of the co-evolution of hosts and parasites in biology. Our strategy combines a space-filling and a node-link approach. Differently from traditional methods, it guarantees an unambiguous and `downward' representation whenever the reconciliation is time-consistent (i.e., meaningful). We address the problem of the minimization of the number of crossings in the representation, by giving a characterization of planar instances and by establishing the complexity of the problem. Finally, we propose heuristics for computing representations with few crossings.Comment: This paper appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017
    corecore