331 research outputs found

    Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

    Get PDF
    Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ~~0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ~~0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (~~0.878 for Max-Cut, and ~~0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem

    Counting Problems in Parameterized Complexity

    Get PDF
    This survey is an invitation to parameterized counting problems for readers with a background in parameterized algorithms and complexity. After an introduction to the peculiarities of counting complexity, we survey the parameterized approach to counting problems, with a focus on two topics of recent interest: Counting small patterns in large graphs, and counting perfect matchings and Hamiltonian cycles in well-structured graphs. While this survey presupposes familiarity with parameterized algorithms and complexity, we aim at explaining all relevant notions from counting complexity in a self-contained way

    Modular Counting of Subgraphs: Matchings, Matching-Splittable Graphs, and Paths

    Get PDF
    We systematically investigate the complexity of counting subgraph patterns modulo fixed integers. For example, it is known that the parity of the number of kk-matchings can be determined in polynomial time by a simple reduction to the determinant. We generalize this to an nf(t,s)n^{f(t,s)}-time algorithm to compute modulo 2t2^t the number of subgraph occurrences of patterns that are ss vertices away from being matchings. This shows that the known polynomial-time cases of subgraph detection (Jansen and Marx, SODA 2015) carry over into the setting of counting modulo 2t2^t. Complementing our algorithm, we also give a simple and self-contained proof that counting kk-matchings modulo odd integers qq is Mod_q-W[1]-complete and prove that counting kk-paths modulo 22 is Parity-W[1]-complete, answering an open question by Bj\"orklund, Dell, and Husfeldt (ICALP 2015).Comment: 23 pages, to appear at ESA 202

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Extensor-coding

    Get PDF
    We devise an algorithm that approximately computes the number of paths of length kk in a given directed graph with nn vertices up to a multiplicative error of 1±ε1 \pm \varepsilon. Our algorithm runs in time ε24k(n+m)poly(k)\varepsilon^{-2} 4^k(n+m) \operatorname{poly}(k). The algorithm is based on associating with each vertex an element in the exterior (or, Grassmann) algebra, called an extensor, and then performing computations in this algebra. This connection to exterior algebra generalizes a number of previous approaches for the longest path problem and is of independent conceptual interest. Using this approach, we also obtain a deterministic 2kpoly(n)2^{k}\cdot\operatorname{poly}(n) time algorithm to find a kk-path in a given directed graph that is promised to have few of them. Our results and techniques generalize to the subgraph isomorphism problem when the subgraphs we are looking for have bounded pathwidth. Finally, we also obtain a randomized algorithm to detect kk-multilinear terms in a multivariate polynomial given as a general algebraic circuit. To the best of our knowledge, this was previously only known for algebraic circuits not involving negative constants.Comment: To appear at STOC 2018: Symposium on Theory of Computing, June 23-27, 2018, Los Angeles, CA, US

    Finding Long Directed Cycles Is Hard Even When DFVS Is Small or Girth Is Large

    Get PDF
    We study the parameterized complexity of two classic problems on directed graphs: Hamiltonian Cycle and its generalization Longest Cycle. Since 2008, it is known that Hamiltonian Cycle is W[1]-hard when parameterized by directed treewidth [Lampis et al., ISSAC\u2708]. By now, the question of whether it is FPT parameterized by the directed feedback vertex set (DFVS) number has become a longstanding open problem. In particular, the DFVS number is the largest natural directed width measure studied in the literature. In this paper, we provide a negative answer to the question, showing that even for the DFVS number, the problem remains W[1]-hard. As a consequence, we also obtain that Longest Cycle is W[1]-hard on directed graphs when parameterized multiplicatively above girth, in contrast to the undirected case. This resolves an open question posed by Fomin et al. [ACM ToCT\u2721] and Gutin and Mnich [arXiv:2207.12278]. Our hardness results apply to the path versions of the problems as well. On the positive side, we show that Longest Path parameterized multiplicatively above girth belongs to the class XP

    Recent Advances in Fully Dynamic Graph Algorithms

    Full text link
    In recent years, significant advances have been made in the design and analysis of fully dynamic algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented and tested on real datasets, and their practical potential is far from understood. Here, we present a quick reference guide to recent engineering and theory results in the area of fully dynamic graph algorithms

    Quantification of the value of monitoring information for deteriorated structures

    Get PDF

    Detecting Feedback Vertex Sets of Size kk in O(2.7k)O^\star(2.7^k) Time

    Full text link
    In the Feedback Vertex Set problem, one is given an undirected graph GG and an integer kk, and one needs to determine whether there exists a set of kk vertices that intersects all cycles of GG (a so-called feedback vertex set). Feedback Vertex Set is one of the most central problems in parameterized complexity: It served as an excellent test bed for many important algorithmic techniques in the field such as Iterative Compression~[Guo et al. (JCSS'06)], Randomized Branching~[Becker et al. (J. Artif. Intell. Res'00)] and Cut\&Count~[Cygan et al. (FOCS'11)]. In particular, there has been a long race for the smallest dependence f(k)f(k) in run times of the type O(f(k))O^\star(f(k)), where the OO^\star notation omits factors polynomial in nn. This race seemed to be run in 2011, when a randomized algorithm O(3k)O^\star(3^k) time algorithm based on Cut\&Count was introduced. In this work, we show the contrary and give a O(2.7k)O^\star(2.7^k) time randomized algorithm. Our algorithm combines all mentioned techniques with substantial new ideas: First, we show that, given a feedback vertex set of size kk of bounded average degree, a tree decomposition of width (1Ω(1))k(1-\Omega(1))k can be found in polynomial time. Second, we give a randomized branching strategy inspired by the one from~[Becker et al. (J. Artif. Intell. Res'00)] to reduce to the aforementioned bounded average degree setting. Third, we obtain significant run time improvements by employing fast matrix multiplication.Comment: SODA 2020, 22 page
    corecore