8 research outputs found

    Coxeter Polynomials of Salem trees

    Full text link
    We compute the Coxeter polynomial of a family of Salem trees, and also the limit of the spectral radii of their Coxeter transformations as the number of their vertices tends to infinity. We also prove a relation about multiplicities of eigenvalues of Coxeter transformations of joins of trees.Comment: 9 page

    A Framework for Coxeter Spectral Classification of Finite Posets and Their Mesh Geometries of Roots

    Get PDF
    Following our paper [Linear Algebra Appl. 433(2010), 699–717], we present a framework and computational tools for the Coxeter spectral classification of finite posets J≡(J,⪯). One of the main motivations for the study is an application of matrix representations of posets in representation theory explained by Drozd [Funct. Anal. Appl. 8(1974), 219–225]. We are mainly interested in a Coxeter spectral classification of posets J such that the symmetric Gram matrix GJ:=(1/2)[CJ+CJtr]∈J(ℚ) is positive semidefinite, where CJ∈J(ℤ) is the incidence matrix of J. Following the idea of Drozd mentioned earlier, we associate to J its Coxeter matrix CoxJ:=-CJ·CJ-tr, its Coxeter spectrum speccJ, a Coxeter polynomial coxJ(t)∈ℤ[t], and a Coxeter number  cJ. In case GJ is positive semi-definite, we also associate to J a reduced Coxeter number   čJ, and the defect homomorphism ∂J:ℤJ→ℤ. In this case, the Coxeter spectrum speccJ is a subset of the unit circle and consists of roots of unity. In case GJ is positive semi-definite of corank one, we relate the Coxeter spectral properties of the posets J with the Coxeter spectral properties of a simply laced Euclidean diagram DJ∈{̃n,̃6,̃7,̃8} associated with J. Our aim of the Coxeter spectral analysis of such posets J is to answer the question when the Coxeter type CtypeJ:=(speccJ,cJ,  čJ) of J determines its incidence matrix CJ (and, hence, the poset J) uniquely, up to a ℤ-congruency. In connection with this question, we also discuss the problem studied by Horn and Sergeichuk [Linear Algebra Appl. 389(2004), 347–353], if for any ℤ-invertible matrix A∈n(ℤ), there is B∈n(ℤ) such that Atr=Btr·A·B and B2=E is the identity matrix

    A graph theoretical framework for the strong Gram classification of non-negative unit forms of Dynkin type A

    Full text link
    In the context of signed line graphs, this article introduces a modified inflation technique to study strong Gram congruence of non-negative (integral quadratic) unit forms, and uses it to show that weak and strong Gram congruence coincide among positive unit forms of Dynkin type A. The concept of inverse of a quiver is also introduced, and is used to obtain and analyze the Coxeter matrix of non-negative unit forms of Dynkin type A. Connected principal unit forms of such type are also classified.Comment: Integral quadratic form, Gram congruence, quiver, Dynkin type, Coxeter matrix, edge-bipartite graph, signed line grap

    Algorithms computing O(n, Z)-orbits of P-critical edge-bipartite graphs and P-critical unit forms using Maple and C#

    No full text
    We present combinatorial algorithms constructing loop-free P-critical edge-bipartite (signed) graphs Δ′, with n ≥ 3 vertices, from pairs (Δ, w), with Δ a positive edge-bipartite graph having n-1 vertices and w a sincere root of Δ, up to an action ∗ : UBigrn × O(n, Z) → UBigrn of the orthogonal group O(n, Z) on the set UBigrn of loop-free edge-bipartite graphs, with n ≥ 3 vertices. Here Z is the ring of integers. We also present a package of algorithms for a Coxeter spectral analysis of graphs in UBigrn and for computing the O(n, Z)-orbits of P-critical graphs Δ in UBigrn as well as the positive ones. By applying the package, symbolic computations in Maple and numerical computations in C#, we compute P-critical graphs in UBigrn and connected positive graphs in UBigrn, together with their Coxeter polynomials, reduced Coxeter numbers, and the O(n, Z)-orbits, for n ≤ 10. The computational results are presented in tables of Section 5

    Konstrukcje algorytmiczne nieujemnych grafów krawędziowo-dwudzielnych oraz kongruencji macierzy Grama

    Get PDF
    Rozprawa jest poświęcona wybranym problemom algorytmicznym i obliczeniowym występujących w klasyfikacji Grama dodatnio określonych oraz dodatnio półokreślonych głównych całkowitych jednorodnych funkcjonałów kwadratowych, a także klasyfikacji Coxetera-Grama dodatnich oraz głównych grafów krawędziowo-dwudzielnych bez pętli o skończonym zbiorze wierzchołków oraz skończonym zbiorze krawędzi oznakowanych symbolami z dwuelementowego zbioru {+,-}. Jednym z głównych celów tej pracy jest zbudowanie narzędzi algorytmicznych do rozwiązywania wybranych problemów spektralnej klasyfikacji Coxetera nieujemnych grafów krawędziowo-dwudzielnych bez pętli. W rozprawie przedstawiamy m.in. konstrukcję klasy algorytmów kombinatorycznych i numerycznych pozwalających rozwiązywać problemy spektralnej klasyfikacji Coxetera grafów krawędziowo-dwudzielnych bez pętli
    corecore