2,147 research outputs found

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Exploiting Hopsets: Improved Distance Oracles for Graphs of Constant Highway Dimension and Beyond

    Get PDF
    For fixed h >= 2, we consider the task of adding to a graph G a set of weighted shortcut edges on the same vertex set, such that the length of a shortest h-hop path between any pair of vertices in the augmented graph is exactly the same as the original distance between these vertices in G. A set of shortcut edges with this property is called an exact h-hopset and may be applied in processing distance queries on graph G. In particular, a 2-hopset directly corresponds to a distributed distance oracle known as a hub labeling. In this work, we explore centralized distance oracles based on 3-hopsets and display their advantages in several practical scenarios. In particular, for graphs of constant highway dimension, and more generally for graphs of constant skeleton dimension, we show that 3-hopsets require exponentially fewer shortcuts per node than any previously described distance oracle, and also offer a speedup in query time when compared to simple oracles based on a direct application of 2-hopsets. Finally, we consider the problem of computing minimum-size h-hopset (for any h >= 2) for a given graph G, showing a polylogarithmic-factor approximation for the case of unique shortest path graphs. When h=3, for a given bound on the space used by the distance oracle, we provide a construction of hopset achieving polylog approximation both for space and query time compared to the optimal 3-hopset oracle given the space bound

    Exact Distance Oracles for Planar Graphs with Failing Vertices

    Full text link
    We consider exact distance oracles for directed weighted planar graphs in the presence of failing vertices. Given a source vertex uu, a target vertex vv and a set XX of kk failed vertices, such an oracle returns the length of a shortest uu-to-vv path that avoids all vertices in XX. We propose oracles that can handle any number kk of failures. More specifically, for a directed weighted planar graph with nn vertices, any constant kk, and for any q∈[1,n]q \in [1,\sqrt n], we propose an oracle of size O~(nk+3/2q2k+1)\tilde{\mathcal{O}}(\frac{n^{k+3/2}}{q^{2k+1}}) that answers queries in O~(q)\tilde{\mathcal{O}}(q) time. In particular, we show an O~(n)\tilde{\mathcal{O}}(n)-size, O~(n)\tilde{\mathcal{O}}(\sqrt{n})-query-time oracle for any constant kk. This matches, up to polylogarithmic factors, the fastest failure-free distance oracles with nearly linear space. For single vertex failures (k=1k=1), our O~(n5/2q3)\tilde{\mathcal{O}}(\frac{n^{5/2}}{q^3})-size, O~(q)\tilde{\mathcal{O}}(q)-query-time oracle improves over the previously best known tradeoff of Baswana et al. [SODA 2012] by polynomial factors for q=Ω(nt)q = \Omega(n^t), t∈(1/4,1/2]t \in (1/4,1/2]. For multiple failures, no planarity exploiting results were previously known

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    Recent Advances in Fully Dynamic Graph Algorithms

    Full text link
    In recent years, significant advances have been made in the design and analysis of fully dynamic algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented and tested on real datasets, and their practical potential is far from understood. Here, we present a quick reference guide to recent engineering and theory results in the area of fully dynamic graph algorithms

    Scattering and Sparse Partitions, and Their Applications

    Get PDF

    Optimal Output Sensitive Fault Tolerant Cuts

    Get PDF
    In this paper we consider two classic cut-problems, Global Min-Cut and Min k-Cut, via the lens of fault tolerant network design. In particular, given a graph G on n vertices, and a positive integer f, our objective is to compute an upper bound on the size of the sparsest subgraph H of G that preserves edge connectivity of G (denoted by ?(G)) in the case of Global Min-Cut, and ?(G,k) (denotes the minimum number of edges whose removal would partition the graph into at least k connected components) in the case of Min k-Cut, upon failure of any f edges of G. The subgraph H corresponding to Global Min-Cut and Min k-Cut is called f-FTCS and f-FT-k-CS, respectively. We obtain the following results about the sizes of f-FTCS and f-FT-k-CS. - There exists an f-FTCS with (n-1)(f+?(G)) edges. We complement this upper bound with a matching lower bound, by constructing an infinite family of graphs where any f-FTCS must have at least ((n-?(G)-1)(?(G)+f-1))/2+(n-?(G)-1)+/?(G)(?(G)+1))/2 edges. - There exists an f-FT-k-CS with min{(2f+?(G,k)-(k-1))(n-1), (f+?(G,k))(n-k)+?} edges. We complement this upper bound with a lower bound, by constructing an infinite family of graphs where any f-FT-k-CS must have at least ((n-?(G,k)-1)(?(G,k)+f-k+1))/2)+n-?(G,k)+k-3+((?(G,k)-k+3)(?(G,k)-k+2))/2 edges. Our upper bounds exploit the structural properties of k-connectivity certificates. On the other hand, for our lower bounds we construct an infinite family of graphs, such that for any graph in the family any f-FTCS (or f-FT-k-CS) must contain all its edges. We also add that our upper bounds are constructive. That is, there exist polynomial time algorithms that construct H with the aforementioned number of edges
    • 

    corecore