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Abstract
In this paper we consider two classic cut-problems, Global Min-Cut and Min k-Cut, via the
lens of fault tolerant network design. In particular, given a graph G on n vertices, and a positive
integer f , our objective is to compute an upper bound on the size of the sparsest subgraph H of
G that preserves edge connectivity of G (denoted by λ(G)) in the case of Global Min-Cut, and
λ(G, k) (denotes the minimum number of edges whose removal would partition the graph into at
least k connected components) in the case of Min k-Cut, upon failure of any f edges of G. The
subgraph H corresponding to Global Min-Cut and Min k-Cut is called f -FTCS and f -FT-k-CS,
respectively. We obtain the following results about the sizes of f -FTCS and f -FT-k-CS.

There exists an f -FTCS with (n− 1)(f + λ(G)) edges. We complement this upper bound with
a matching lower bound, by constructing an infinite family of graphs where any f -FTCS must
have at least (n−λ(G)−1)(λ(G)+f−1)

2 + (n− λ(G)− 1) + λ(G)(λ(G)+1)
2 edges.

There exists an f -FT-k-CS with min{(2f + λ(G, k)− (k − 1))(n− 1), (f + λ(G, k))(n− k) + `}
edges. We complement this upper bound with a lower bound, by constructing an infinite family
of graphs where any f -FT-k-CS must have at least (n−λ(G,k)−1)(λ(G,k)+f−k+1)

2 ) + n− λ(G, k) +
k − 3 + (λ(G,k)−k+3)(λ(G,k)−k+2)

2 edges.
Our upper bounds exploit the structural properties of k-connectivity certificates. On the other
hand, for our lower bounds we construct an infinite family of graphs, such that for any graph in
the family any f -FTCS (or f -FT-k-CS) must contain all its edges. We also add that our upper
bounds are constructive. That is, there exist polynomial time algorithms that construct H with the
aforementioned number of edges.
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1 Introduction

There is a common proverb in English – m it is better to be safe than sorry! Probably, it
has never been more true than the Covid-19-times we are living in. Closed in our homes,
computers are probably our only way of communicating with the world. Our machines are
part of a larger network – it is is just a node in the network. Thus, to get past this moment
in time we need our networks to be more reliable, than ever before. Unfortunately, most of
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10:2 Optimal Output Sensitive Fault Tolerant Cuts

the real life networks are prone to failures. A failure of a link (or a small number of links)
in the network may lead to a breakdown in communication. This motivates us to build
networks that are resilient to failures, leading to the field of fault tolerant network design.

Networks are best modelled as graphs. For example, we could imagine we have a
communication network, where the nodes (or vertices) are computers, routers, or cell-towers
and there is an edge between them if they can communicate. One could also imagine a
transportation network, where the edges correspond to segment of a road and the junctions
between the roads are vertices. Once we have abstracted these networks as graphs, there
are a number of properties we could try to ask about graphs that are meaningful for the
particular network they represent. As stated earlier, real life networks are prone to failures.
That is, edges (or vertices) may change their status from active to failed, and vice versa.
These failures may occur anytime; however it is expected that they are small in numbers.
Further, we can assume that failures are not permanent as they are repaired simultaneously.
The fact that we only have a small number of failures is captured by associating an integer–a
fault parameter f with the network. That is, we assume that at any point of time we only
have at most f -edges (or vertices) that are failed. Indeed, f is much smaller than the number
of vertices in the graph. This motivates the research on designing fault tolerant structures
for various graph problems in terms of fault parameter f and the input size n.

We now formally define the model of fault tolerant network design, with respect to a
property Π, we would be interested in. A property of graphs is a function σ that assigns to
each graph a value in {true, false}. Given a graph G, a fault parameter f , we want to find a
subgraph H of G, such that for any set F ⊆ E(G)(V (G)) of size f , we have the following:
σ(G− F ) is true if and only if σ(H − F ) is true. In general, the solution of a fault tolerant
network design is measured by the size of the subgraph H. That is, our objective is to find
H with as few edges as possible. Fault tolerant subgraphs have been developed for various
problems like reachability [3, 4, 8], shortest path [6, 20, 37–39] and spanners [5, 7, 9, 12, 36].
A fault tolerant subgraph for single source reachability in directed graphs was shown by
Baswana et al. [4] to contain Θ(2fn) edges. Given a graph G, a source s, and an integer f , a
subgraph H is an (α, β)-single source fault tolerant subgraph, if for every vertex v ∈ V (G),
for every F ⊆ E(G) of size at most f , dist(s, v,H − F ) ≤ α·dist(s, v,G − F ) + β. Parter
and Peleg [39] gave an (3(f + 1), (f + 1) logn)-single source fault tolerant subgraph with
with O(fn) edges. For spanners with a stretch k, Dinitz et al. [12] gave an f -fault tolerant
k-spanner with Õ(f2n1+ 2

k+1 ) edges. Recently, Chakraborty and Choudhary [8] showed an
O(n + min |P |

√
n, n

√
|P |) bound on a subgraph, that is an 1-fault tolerant reachability

preserver for a given vertex-pair set P ⊆ V (G)× V (G).
Our main objective of this article is to extend this study to two classic cut-problems,

Global Min-Cut and Min k-Cut. Arguably, Global Min-Cut and Min k-Cut are
one of the two most well-studied problems in the field of graph algorithms. In the Min
k-Cut problem, input is an undirected graph G and an integer k, and the task is to partition
the vertex set into k non-empty sets, say P̃ , such that the total number of the edges with
endpoints in different parts is minimized. We call such a partition as min k-cut, or simply a
k-cut. For k = 2, rather that saying 2-cut, we say min-cut. Indeed, for k = 2, this is the
classic Global Min-Cut problem, which can be solved in polynomial time. In fact, for every
fixed k, the problem is known to be polynomial time solvable [18]. However, when k is part
of the input, the problem is NP-complete [18]. Both these problems have been extensively
studied in the last 30 years, and the running time of algorithms for these two problems have
been improved over the years [10, 15, 19, 22, 24–28, 30, 32, 35, 40, 41]. In particular, after a
series of improvement, the fastest known algorithm for Global Min-Cut in unweighted
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graphs is given by Ghaffari et al. [17] that runs in time O(m logn). On the other hand, for
edge-weighted graphs the fastest known algorithm for Global Min-Cut is independently
given by Gawrychowski et al [16] and Mukhopadhyay and Nanongkai [34] and (almost) runs
in time O(m log2 n). Both of these algorithms are randomized. The best known deterministic
algorithm for the problem on unweighted graph is given by Henzinger et al. [23] and runs in
time O(m log2 n(log logn)2).

The history of Min k-Cut problem is also extremely rich. The direction of polynomial
time approximation algorithms is essentially settled, with factor 2(1 − 1

k ) approximation
algorithms and matching lower bounds. Recently, Gupta et al. [19] showed that for every
fixed k ≥ 2, the Karger-Stein algorithm [29] outputs any fixed k-cut with probability at
least Ô(n−k), where Ô(·) hides a 2O(ln lnn)2 factor. This immediately gives an extremal
bound of Ô(nk), on the number of minimum k-cuts in an n-vertex graph and an algorithm
for Min k-Cut in similar running time. Both the extremal bound and the running time
of the algorithm are essentially tight (under reasonable assumptions). Indeed the extremal
bound matches known lower bounds up to Ô(1) factors, while any further improvement to
the exact algorithm would imply an improved algorithm for Max-Weight k-Clique [1, 2],
which has been conjectured not to exist. One can also obtain f(k)no(k) lower bound on
the running time [11, 13] under the Exponential Time Hypothesis (ETH). In the world of
FPT-approximation, Min k-Cut is known to admit (1 + ε) approximation algorithm running
in time (kε )O(k)nO(1) [31].

1.1 Our Results and Methods
In this paper we initiate a new research direction to the studies of Global Min-Cut and
Min k-Cut. In particular we do the following.

We focus on Global Min-Cut and Min k-Cut, via the lens of fault tolerant network
design, and construct asymptotically optimal fault tolerant subgraphs for these two
problems.

Given a graph G, let λ(G) and λ(G, k) denote the size of min-cut and k-cut of G,
respectively. We formally define the objects we consider in the paper.

I Definition 1.1 (f -FTCS (f -FT-k-CS)). An f -FTCS (f -FT-k-CS) is a subgraph H of G
such that for any set of edges F ⊆ E(G) of cardinality at most f , λ(G − F ) = λ(H − F )
(λ(G−F, k) = λ(H −F, k)). For a graph G, we use Ψ(G, k) to denote the minimum number
of edges in a f -FT-k-CS of G. That is,

Ψ(G, k) = min
H is an f -FT-k-CS of G

|E(H)|

When k = 2, this denotes the minimum number of edges in a f -FTCS of G. In this case we
simply use Ψ(G), rather than Ψ(G, 2).

Let F be a family of graphs, then for all n ∈ N, we define the following:

Ftcs(F , n, f) = max
G∈F,|V (G)|=n

Ψ(G)

Ft-k-cs(F , n, f) = max
G∈F,|V (G)|=n

Ψ(G, k)

When F is the family of all graphs, then we simply use Ftcs(n, f) and Ft-k-cs(n, f).
Our goal is to give asymptotic upper bounds on Ftcs(n, f) and Ft-k-cs(n, f). Since any
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10:4 Optimal Output Sensitive Fault Tolerant Cuts

graph has at most
(
n
2
)
edges, we have that Ftcs(n, f) (or Ft-k-cs(n, f)) is at most O(n2).

Let G be a clique on n vertices. First, note that λ(G) = n − 1. Next observe that any
f -FTCS, H of G, even for f = 1, must contain all the edges of the clique. Indeed, if an edge
(u, v) ∈ E(G) is not present in H, then the adversary may delete an edge adjacent to u or v
in the clique, that is not (u, v). In this case, λ(G− F ) = n− 2, whereas λ(H − F ) ≤ n− 3.
This simple construction shows that Ftcs(n, 1) is at least Ω(n2). This bound tells us that
for these problems we can not improve upon the trivial upper bounds.

Our example with family of cliques seems to suggest that we have reached the end of the
road. However, on the second look we observe that for a clique even λ(G) = Ω(n). Thus, we
can also express our lower bound as λ(G) · n. This motivates us to look for a fine-grained
definition of Ftcs(n, f) and Ft-k-cs(n, f), that not only takes into account n and f , but
also some parameter that captures the edge-connectivity (or the value of k-cut) of the input
graph. In particular, we can come up with the following new definitions. Let F be a family
of graphs, then for all n, ` ∈ N, we define the following:

Ftcs(F , n, `, f) = max
G∈F,|V (G)|=n,λ(G)=`

Ψ(G)

Ft-k-cs(F , n, `, f) = max
G∈F,|V (G)|=n,λ(G,k)=`

Ψ(G, k)

With respect to our new definition, when F is a family of cliques, we have that
Ftcs(F , n, `, 1) is at most O(`n). Thus, a natural question arises: Can we derive sim-
ilar upper bound even when F denotes the family of all graphs? Indeed, we provide a
matching upper and lower bound on these quantities in this paper. As before, when F is
the family of all graphs. Then, we simply use Ftcs(n, `, f) and Ft-k-cs(n, `, f). Our first
result is the following.

I Theorem 1.2. Let n, ` and f be three positive integers. Then, Ftcs(n, `, f) is upper
bounded by (f + `)(n− 1).

The proof of Theorem 1.2 is inspired from the concept of k-connectivity certificates used in
the literature [14,35]. For a k-edge connected graph G = (V,E), a subset of edges E′ ⊆ E
is called a k-connectivity certificate of the graph G, if the subgraph G′ = (V,E′) is k-edge
connected. For a k-edge connected graph on n vertices, there always exists a k−connectivity
certificate with at most k(n− 1) edges [14]. For our proof, we modify a known construction
of a k-connectivity certificate to also handle edge failures.

Our second result complements the above upper bound, by showing that this bound is
tight upto constant factors. Specifically, we show the following.

I Theorem 1.3. There exists an infinite family of triplets (n, `, f) such that

Ftcs(n, `, f) ≥ (n− `− 1)(`+ f − 1)
2 + (n− `− 1) + `(`+ 1)

2 .

To prove Theorem 1.3, we construct an infinite family of graphs (G), such that for any G ∈ G
we have that any f -FTCS of G must contain all its edges. In particular, for any positive
integers n, `, f , such that n−`−1

`+f is an integer, we construct a graph G on n vertices and
(n− `− 1) (`+f−1)

2 + (n− `− 1) + `(`+1)
2 edges with λ(G) = ` (note that ` ≤ n− 1) such that

any f -FTCS of G must contain all the edges of G. The construction of the family G, and
the analysis that for any graph G ∈ G, any f -FTCS of G must contain all its edges are quite
technical.

Next we generalize our results on Global Min-Cut to Min k-Cut and give the following
two results about Ft-k-cs(n, `, f).
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I Theorem 1.4. Let n, ` and f be three positive integers. Then, Ft-k-cs(n, `, f) is upper
bounded by min{(2f + `− (k − 1))(n− 1), (f + `)(n− k) + `}.

Proof of Theorem 1.4 is quite involved and requires understanding the intricate relationship
between edge-connectivity certificates and the Min k-Cut problem. This is one of the main
technical results. In our final result, we complement Theorem 1.4 with a tight lower bound.

I Theorem 1.5. There exists an infinite family of triplets (n, `, f) such that

Ft-k-cs(n, `, f) ≥ (n− `− 1)(`+ f − k + 1)
2 ) + n− `+ k − 3 + (`− k + 3)(`− k + 2)

2 .

While the construction is somewhat similar in spirit to the construction of the lower bound
for the construction of the family of graphs for Global Min-Cut, the proof of correctness
is even more involved.

Tightness of our Upper and Lower Bounds. Notwithstanding the fact that the leading
terms in our upper and lower bounds appear close, there are some negative quantities in
the leading terms, and in some ranges, the other terms in the bounds dominate. Still, our
bounds for Global Min-Cut are asymptotically optimal. For example in the lower bound
for Global Min-Cut (Theorem 1.3), when n−` becomes o(n), ` is Ω(n) and in this case the
`(`+1)

2 bound dominates and we get a lower bound of Ω(n2) which is asymptotially optimal
given our upper bound and the range of `. When ` is o(n), our lower bound is Ω((f + `)n)
which matches asymptotically with the upper bound.

For Min k-Cut however, there are some gaps. For example, if ` = n−1 and k = n− logn,
the upper bound is O((f + n) logn) but the lower bound is Ω(n). Such a gap exists in some
ranges of f and k when n− ` and `− k are both o(n). However, when n− ` or `− k is Θ(n),
our upper and lower bounds are a constant factor away from each other.

Algorithmic Considerations. The proof of Theorem 1.2 is constructive. That is, given a
graph G and an integer f , in polynomial time we can construct an f -FTCS of G with at
most (f + λ(G))(n − 1) edges. For this algorithm we just need the value of λ(G)), which
can be computed in O(m log2 n(log logn)2) time [23]. However, the proof of Theorem 1.4
is “almost” constructive. That is, the proof can be made constructive, if for a graph G we
can compute the value of λ(G, k) in polynomial time. Indeed, for a constant value of k, we
could use the polynomial time algorithm running in time nO(k) [10, 19, 41]. However, the
running time of this algorithm grows with k, and hence becomes prohibitive quite soon.
Thus, as an alternative we could use an upper bound on λ(G, k), provided by the known
polynomial time factor 2 approximation algorithm [21, 42]. This leads to an upper bound of
min{(2f + 2λ(G, k)− (k − 1))(n− 1), (f + 2λ(G, k))(n− k) + 2λ(G, k)} on the constructed
f -FT-k-CS, which is slightly worse than the upper bound provided by Theorem 1.4.

2 Preliminaries

Given an integer q, we use [q] to denote {1, . . . , q}. Further, for two integers, q1 ≤ q2, we
use [q1, q2] to denote {q1, . . . , q2}. For a graph G = (V,E), we also use V (G) and E(G) to
denote the set of vertices and the set of edges of graph G, respectively. A path P in G is a
sequence of distinct vertices (P = v1v2 · · · vq), such that two consecutive vertices have an
edge between them. Let A1, . . . , A` be a partition of the vertex set V (G) of a graph G. That
is, ∪`i=1Ai = V (G) and for all i 6= j, Ai ∩Aj = ∅. We use E(A1, . . . , A`, G) to denote the set

FSTTCS 2020



10:6 Optimal Output Sensitive Fault Tolerant Cuts

of edges such that each edge in the set has one endpoint in Ai and the other endpoint in Aj ,
where i 6= j. For a graph G, and a pair of vertices u, v ∈ V (G), we use λG(u, v) to denote
the minimum number of edges whose removal separates u and v (that is, u and v belong
to different connected components). If the graph G is clear from the context, we omit the
subscript G from λG(u, v), and simply write λ(u, v). Next, we state the classical Menger’s
Theorem and a simple lemma which are crucially used in our proofs,

I Lemma 2.1 (Menger’s Theorem, [33]). Let G be an undirected graph and let u and v be
two vertices of G. Then the maximum number of pairwise edge-disjoint u-v paths in G is
equal to λ(u, v).

I Lemma 2.2. Let G = (V,E) be an undirected graph and let H be a subgraph of G. Let
k > 1 be an integer. Then, λ(H) ≤ λ(G) and λ(H, k) ≤ λ(G, k).

3 Global Min-Cut

In this section we develop upper and lower bounds on Ftcs(n, `, f). In particular we prove
Theorems 1.2 and 1.3.

3.1 Upper Bound
Let n, ` and f be three positive integers. We need to show that Ftcs(n, `, f) is upper
bounded by (f + `)(n− 1). Towards this we show that given an undirected graph G, and
an integer f , we can construct an f -FTCS, H, of G on at most (f + λ(G))(n − 1) edges.
Indeed, when λ(G) = `, the upper bound follows. Further, we assume G is connected. If G
is disconnected then λ(G) = 0, and it remains so after any edge failure. Thus, in this case
we can take H to be an empty graph. Our construction is presented next.

Construction of an f-FTCS of a graph G.
1. Initialize f + ` empty (no edges) forests T1, T2, . . . , Tf+` on the same vertex set

V (G).
2. for each edge (u, v) ∈ E(G), do the following.

Find the smallest integer i ∈ [f+`], such that u and v are in different connected
components of Ti. If no such i exists, then assign i to ∞.
If i is not ∞ then add (u, v) to Ti.

3. Output H = ∪f+`
a=1Ta.

We will show that H is an f -FTCS with at most (f + `)(n− 1) edges. The bound on the
number of edges on H is clear, as H is the union of at most (f + `) forests.

I Lemma 3.1. The subgraph H has at most (f + `)(n− 1) edges.

Next, we show that H is an f -FTCS. We start with the following observation.

I Lemma 3.2. (?) 1 Let (u, v) ∈ E(G) \ E(H). Then there are at least `+ f edge-disjoint
paths between u and v in G and H.

1 Results marked with ? are deferred to the full version.
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C1 C2
Cn−`−1

`+f

X1

X2

a1

a2

a3

a`+1

Figure 1 Vertex a1 has degree n− `−1 within X1. Vertices a1, a2, ..., a`+1 in X2 form an induced
`+ 1-clique. C1, C2, ..., Cn−`−1

`+f
represent n−`−1

`+f cliques each of size `+ f within X1.

To prove that H is an f -FTCS of G, we need to show that for any set of edges F ⊆ E(G)
of cardinality at most f , λ(H − F ) = λ(G− F ). As H is a subgraph of G, we know from
Lemma 2.2 that λ(H − F ) ≤ λ(G− F ). Now we show that λ(H − F ) ≥ λ(G− F ).

I Lemma 3.3. Let G be an undirected graph with λ(G) = `, f be a positive integer, and H be
the subgraph constructed above. Then for any set F of at most f edges, λ(H−F ) ≥ λ(G−F ).

Proof. Let A,B be a partition of V (G) such that |E(A,B,H − F )| = λ(H − F ). If
E(A,B,H − F ) = E(A,B,G− F ), then we have that a min-cut in H − F is also a min-cut
in G− F of the same size, thereby proving that λ(H − F ) ≥ λ(G− F ). Suppose not. As H
is a subgraph of G, E(A,B,H − F ) ⊆ E(A,B,G− F ). Suppose (u, v) ∈ E(A,B,G− F ) \
E(A,B,H − F ). Then (u, v) ∈ E(G) \ E(H). Then from Lemma 3.2, there are `+ f edge-
disjoint paths between u and v in H, and hence there will be at least ` edge-disjoint paths
between u and v in H−F . Hence, λ(H−F ) = |E(A,B,H−F )| ≥ ` = λ(G) ≥ λ(G−F ). J

Proof of Theorem 1.2 follows from Lemmas 3.1, 3.2 and 3.3.

3.2 Lower Bound

In this section we show that the upper bound shown on Ftcs(n, `, f) in Section 3.1 is indeed
asymptotically tight. To prove Theorem 1.3, we construct an infinite family of graphs G, such
that for any G ∈ G we have that any f -FTCS of G must contain all its edges. In particular,
for any positive integers n, `, f , such that n−`−1

`+f is an integer, we construct a graph G on n
vertices and (n − ` − 1) (`+f−1)

2 + (n − ` − 1) + `(`+1)
2 edges with λ(G) = `, such that any

f -FTCS of G must contain all the edges of G.
Let n, `, f be three integers such that n−`−1

`+f = q is an integer. We first describe the
construction of a graph G on n vertices. To easily understand our construction, we would
suggest to simultaneously refer to the illustration given in Figure 1.

FSTTCS 2020
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Construction of a graph G. Here, q = n−`−1
`+f

.
The vertex set V (G) is a union of X1 and X2, such that |X1 ∩X2| = 1.
X1 has q pairwise vertex disjoint cliques C1, . . . , Cq. Each clique Ci is on (`+ f)
vertices. X1 also contains a vertex a1 as described below.(The edges of the cliques,
C1, . . . , Cq, are denoted by the solid blue edges in Figure 1.)
The set X2 consists of a1, . . . , a`+1 vertices that form a clique. These vertices do
not belong to the cliques, C1, . . . , Cq. (The edges of the clique on a1, . . . , a`+1 are
represented by blue solid edges in Figure 1.)
Let a1 ∈ X2 be a fixed vertex. Each vertex in a clique Ci, i ∈ [q], is adjacent to
the vertex a1. There are no edges between a pair of vertices belonging to two
distinct cliques, Ci and Cj . The vertex a1 is the only common vertex between two
sets X1 and X2. (Edges between a1 and the vertices in the cliques, C1, . . . , Cq,
are represented by the red dotted edges in Figure 1.)

In the upcoming lemmas we show certain properties of our construction. Here, Lemma 3.5
is used to prove Lemma 3.6.

I Lemma 3.4. (?) The number of edges in G is (n− `− 1) (`+f+1)
2 + `(`+1)

2 .

I Lemma 3.5. (?) For any two vertices u1, u2 ∈ X1, λ(u1, u2) ≥ `+ f .

I Lemma 3.6. (?) Let G be a graph and f ≥ 1 be a positive integer. Then λ(G) = `. Further,
for any F ⊆ E(G[X1]) of size at most f , we have that λ(G− F ) = `.

We now prove the final property of an f -FTCS.

I Lemma 3.7. Any f -FTCS of G must contain all the edges of G.

Proof. Let H be an f -FTCS of G. We will show that H must contain all the edges of G.
Towards this, we partition the edges of G into three parts, and show that all these edges are
required in H. In particular, we show that if H does not include an edge of G, then there
is a strategy for the adversary to choose a subset F of edges (of size at most f) to delete
from G such that λ(G−F ) and λ(H −F ) are not the same. Let ui, i ∈ [`+ f ], be the set of
vertices of a fixed clique Cj .
(i) Let us first show that the edges in the cliques Ci, i ∈ [q], have to be present in H (the

solid blue edges in X1 in Figure 1). Each ui has `+ f − 1 edges to vertices in Cj apart
from an edge to a1. Suppose an edge (uy, uz), y, z ∈ [`+ f ], y 6= z is not present in
H. Let F consist of any f edges adjacent to uz in Cj other than (uy, uz). We know
that f edges exist as ` ≥ 1 (by construction G is connected). Now by Lemma 3.6 we
know that λ(G−F ) = `. But the degree of uz in H −F becomes `− 1 as (uy, uz) /∈ H.
Thus, λ(H − F ) ≤ ` − 1. This contradicts H being an f -FTCS of G. Therefore, all
edges of the cliques Ci must be present in H.

(ii) Next, we show that edges E({a1}, Ci, G), i ∈ [q], must be present in H (the red dotted
edges in X1 in Figure 1). Suppose (uz, a1), z ∈ [`+f ] is not present in H. Let F consist
of any f edges adjacent to uz in Cj other than (uz, a1). Now by Lemma 3.6 we know
that λ(G−f) = `. However, the degree of uz in H−F is `−1. Thus, λ(H−F ) ≤ `−1.
This contradicts H being an f -FTCS of G. Therefore, for all i ∈ [q], all the edges in
E({a1}, Ci, G) must be present in H.

(iii) Lastly, we show that all the edges of the (`+ 1)-clique in X2 formed by ai, i ∈ [`+ 1]
must be present in H (the solid blue edges in X2 in Figure 1). Suppose an edge
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(ai, aj) , i, j ∈ [`+1], i 6= j is not present in H. Let F consist of any f edges of the form
(ui, a1), i ∈ [f ]. All these edges exist in G− F as `+ f ≥ f + 1 (Since by construction
G is connected and ` ≥ 1). Observe that F ⊆ E(G[X1]) of size at most f , and hence by
Lemma 3.6 we have that λ(G− F ) = `. However, λ(H − F ) = `− 1, as ai and aj have
degree `− 1 inside X2 in H −F . This contradicts H being an f -FTCS of G. Therefore,
all the edges of the `+ 1- clique in X2 must be present in H.

The three cases together show that if H is an f -FTCS of G then all edges of the graph G
must be present in H. Thus, the total number of edges present in H is (n− `− 1) (`+f−1)

2 +
(n− `− 1) + `(`+1)

2 . Our proof follows. J

Proof of Theorem 1.3 follows from Lemmas 3.4, 3.6 and 3.7.

4 Min k-Cut

In this section we develop upper and lower bounds on Ft-k-cs(n, `, f). In particular we
prove Theorems 1.4 and 1.5.

4.1 Upper Bound

Let n, ` and f be three positive integers. We need to show that Ft-k-cs(n, `, f) is upper
bounded by min{(2f + `− (k − 1))(n− 1), (f + `)(n− k) + `}. Towards this we show that
given an undirected graph G, and an integer f ≥ 1, we can construct an f -FT-k-CS, H of
G on at most min{(2f + λ(G, k)− (k − 1))(n− 1), ((f + λ(G, k))(n− k) + λ(G, k))} edges.
Indeed, when λ(G, k) = `, the upper bound follows. Our construction is presented next. It is
similar to the construction of in Section 3.1 except for the choice of t. G is assumed to be
connected in the algorithm. The complementary case will be handled later.

K-way-Fault-Tolerant-Construction

Construction of an f -FT-k-CS of a graph G.
1. Let t = min{2f + `+ 1− k, f + `}.
2. Initialize t empty (no edges) forests T1, T2, . . . , Tt on the same vertex set V (G).
3. for each edge (u, v) ∈ E(G), do the following.

Find the smallest integer i ∈ [t], such that u and v are in different connected
components of Ti. If no such i exists, then assign i to ∞.
If i is not ∞ then add (u, v) to Ti.

4. Output H = ∪ta=1Ta.

Next, we show that H is an f -FT-k-CS for both the values the variable t can take. We
start with the following observation which we use in both the cases.

I Lemma 4.1. (?) Let (u, v) ∈ E(G) \ E(H). Then there are at least t edge-disjoint paths
between u and v in G and H.

Note that the t(n− 1) upper bound of Section 3.1 for the number of edges in H applies
here too with the same proof. However, we show stronger bounds for certain values of t.

FSTTCS 2020
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4.1.1 Case of t = f + `

I Lemma 4.2. The subgraph H has at most (f + `)(n− k) + ` edges.

Proof. Let A1, . . . , Ak be a partition of V (G) such that |E(A1, . . . , Ak, G)| = `. Let X =
E(A1, . . . , Ak, G). We will show that every forest Ti−X, i ∈ [f + `], has at least k connected
components. Note that, once we can show this claim, we can get the upper bound on the
number of edges in H. Indeed, each Ti −X has at most n− k edges (since, it has at least k
components) and hence |E(H)| ≤

∑f+`
i=1 |E(Ti −X)|+ |X| ≤ (f + `)(n − k) + `. Next we

prove our claim. Observe that every edge going out of the connected components Aj , j ∈ [k],
is contained inside X. Thus, in particular, every edge going out of the vertices in Aj in Ti is
also contained inside X. Hence, the vertices of Aj at least form one connected component
in Ti − X. This concludes the proof that every forest Ti − X, i ∈ [f + `], has at least k
connected components. J

Next, we show that H is an f -FT-k-CS.

I Lemma 4.3. Let G be a graph with λ(G, k) = `, f be a positive integer, and H be the
subgraph constructed above. Then, for any set F of at most f edges, λ(H−F, k) ≥ λ(G−F, k).

Proof. Let A1, . . . , Ak be a partition of V (G) such that |E(A1, . . . , Ak, H−F )| = λ(H−F, k).
If E(A1, . . . , Ak, H − F ) = E(A1, . . . , Ak, G − F ), then we have that a k-cut in H − F is
also a k-cut in G − F of the same size, thereby proving that λ(H − F, k) ≥ λ(G − F, k).
Suppose not. As H is a subgraph of G, E(A1, . . . , Ak, H − F ) ⊆ E(A1, . . . , Ak, G − F ).
Suppose (u, v) ∈ E(A1, . . . , Ak, G− F ) \E(A1, . . . , Ak, H − F ). Then (u, v) ∈ E(G) \E(H).
Then from Lemma 4.1, there are ` + f edge-disjoint paths between u and v in H, and
hence there will be at least ` edge-disjoint paths between u and v in H − F . Hence,
λ(H − F, k) = |E(A1, . . . , Ak, H − F )| ≥ ` = λ(G, k) ≥ λ(G − F, k). This concludes the
proof. J

4.1.2 Case of t = 2f + ` + 1 − k

We will show that H is an f -FT-k-CS with at most (2f + `+ 1− k)(n− 1) edges.
The bound on the number of edges onH is clear, asH is the union of at most (2f+`+1−k)

forests.

I Lemma 4.4. The subgraph H has at most (2f + `+ 1− k)(n− 1) edges.

We could have obtained a bound similar to Lemma 4.2, but in this case, it does not give us
asymptotically better bound than that of (2f + `+ 1− k)(n− 1). Next, we show that H is
an f -FT-k-CS. We start with the following lemma which is a folklore and we give the proof
here for completeness.

I Lemma 4.5. (?) Let G be a connected graph and let u1, . . . , up ∈ V (G). Further, let E[p]
be an inclusion-wise minimal subset of edges, such that u1, . . . , up get pairwise separated in
G− E[p], then G− E[p] has exactly p connected components, one containing each ui, i ∈ [p].

I Lemma 4.6. Let G be a connected graph, then for all p ≤ k, we have that λ(G, k) ≥
λ(G, p) + (k − p).

Proof. Let A1, . . . Ak be a k partition of V (G) such that |E(A1, . . . , Ak, G)| = λ(G, k). Let
ui ∈ Ai, i ∈ [p], be a vertex. Clearly, E(A1, . . . , Ak, G) separates any pair of vertices in
{u1, . . . , up}, and thus there exists an inclusion-wise minimal subset E[p] ⊆ E(A1, . . . , Ak, G),
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such that any pair of vertices in {u1, . . . , up} gets separated inG−E[p]. Now by Lemma 4.5, we
have that G−E[p] has exactly p connected components, one containing each ui, i ∈ [p]. This
implies that Ep is a p-cut in G (may not be of the minimum size) and thus, |E[p]| ≥ λ(G, p).

However, G− E(A1, . . . , Ak, G) has k connected components, and deleting an edge can
only increase the number of connected components by 1. This implies that |E(A1, . . . , Ak, G)\
E[p]| ≥ (k − p). Putting together this with the fact that |E[p]| ≥ λ(G, p), we get that

λ(G, k) ≥ |E[p]|+ (k − p) ≥ λ(G, p) + (k − p).

This concludes the proof. J

To prove that H is an f -FT-k-CS of G, we need to show that for any set of edges F ⊆ E(G)
of cardinality at most f , λ(H −F, k) = λ(G−F, k). As H is a subgraph of G, we know from
Lemma 2.2 that λ(H − F, k) ≤ λ(G− F, k). Now we show that λ(H − F, k) ≥ λ(G− F, k).
In fact, we will prove something stronger, which we call robustness. That is, for all k? ≤ k,
we have that λ(H − F, k?) ≥ λ(G− F, k?).

I Lemma 4.7 (Robustness). Let G be a connected graph with λ(G, k) = `, f be a positive
integer, and H be the subgraph constructed above. Then, for any set F of at most f edges,
and for k? ≤ k, λ(H − F, k?) ≥ λ(G− F, k?).

Proof. Let A1, . . . Ak? be a partition into k? sets of V (G) such that |E(A1, . . . , Ak? , H−F )| =
λ(H − F, k?). If E(A1, . . . , Ak? , H − F ) = E(A1, . . . , Ak? , G − F ), then we have that a
min k?-cut in H − F is also a min k?-cut in G− F of the same size, thereby proving that
λ(H−F, k?) ≥ λ(G−F, k?). Suppose not. As H is a subgraph of G, E(A1, . . . , Ak? , H−F ) ⊆
E(A1, . . . , Ak? , G−F ). Suppose (u, v) ∈ E(Ai, Aj , G−F )\E(Ai, Aj , H−F ), i, j ∈ [k?], and
i 6= j. Then (u, v) ∈ E(G) \ E(H). From Lemma 4.1, there are 2f + `+ 1− k edge-disjoint
paths between u and v in H, and hence there will be at least f + ` + 1 − k edge-disjoint
paths between u and v in H − F .

Observe that, since G is connected, H is also connected by our construction (T1 is
definitely a spanning tree). However, H −F may not be connected. On the other hand, since
λH(u, v) ≥ 2f + `+ 1− k, we get that λH−F (u, v) ≥ f + `+ 1− k. Note that since, H is
connected, any k-cut has size at least k − 1, and thus, `+ 1 ≥ k (recall that, λ(G, k) = `).
Since, λH−F (u, v) ≥ f + `+ 1− k ≥ f ≥ 1, we have that u and v are in the same connected
component of H − F . Further, they get separated after we delete E(A1, . . . , Ak? , H − F )
from H − F . This implies that the number of connected components in H − F is at most
k? − 1. Next observe that since H is connected, deleting F from H can only result in at
most |F |+ 1 connected components in H − F . Thus, the number of connected components
in H − F , say d, is upper bounded by the minimum of {k? − 1, f + 1}.

Let the connected component containing u, v in H − F be denoted by Cuv. Observe
that E(A1, . . . , Ak? , H −F ) separates u from v in H −F −E(A1, . . . , Ak? , H −F ), and thus
there exists an inclusion-wise minimal subset Euv ⊆ E(A1, . . . , Ak? , H −F ), such that u and
v get separated in (H − F ) − Euv. Further, note that the minimality of Euv implies that
Euv ⊆ E(Cuv), and it is an an inclusion-wise minimal separator for u and v in Cuv. Applying,
Lemma 4.5 on Cuv, we get that Cuv−Euv has exactly two connected components, Cu and Cv,
containing u v, respectively. This implies that |Euv| ≥ λH−F (u, v) = λCuv

(u, v) ≥ f+`+1−k.
Recall that, H − F has d components, and thus H − F − Euv has d + 1 components.
However, H − F − E(A1, . . . , Ak? , H − F ) has k? connected components. This implies that
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|E(A1, . . . , Ak? , H − F ) \ Euv| ≥ (k? − d). Hence,

λ(H − F, k?) = |E(A1, . . . , Ak? , H − F )|
≥ f + `+ 1− k + (k? − d)
≥ `+ (f + 1)− (f + 1)− (k − k?) (Using d ≤ f + 1)
= `− (k − k?)
= λ(G, k)− (k − k?) (since, λ(G, k) = `)
≥ λ(G− F, k?) + (k − k?)− (k − k?) (Lemma 4.6)
= λ(G− F, k?).

This concludes the proof. J

Now we deal with the case when G is not connected.

I Lemma 4.8. Let G be a disconnected graph with d > 1 connected components with
λ(G, k) = ` and let f be a positive integer. Then there exists a subgraph H of G with
at most (n − d)(2f + ` + 2 − k + d) edges such that for any set F of at most f edges,
λ(H − F, k) ≥ λ(G− F, k).

Proof. If d ≥ k, then we return H as an empty (edgeless) graph on the vertices of G. So
let us assume that d < k. Suppose, G has connected components G1, . . . , Gd. We apply
K-way-Fault-Tolerant-Construction with Gi, i ∈ [d] and k′ = (k − d+ 1) and get Hi.
Let H = ∪di=1Hi. That is, we apply our upper bound construction on each of the connected
components with k′ and get the desired H. Lemma 4.7 implies the following.

B Claim 4.9. For all i ∈ [d], k? ≤ k′, Hi is a f -FT-k?-CS of Gi.

Next we show that for any set F of at most f edges, λ(H − F, k) ≥ λ(G − F, k).
Let A1, . . . , Ak be a k partition of V (G) such that |E(A1, . . . , Ak, H − F )| = λ(H − F, k).
Observe that, since Gi is connected we have that Hi is connected. Let A1, . . . , Ak be a k
partition of V (G) such that |E(A1, . . . , Ak, H − F )| = λ(H − F, k). Recall, that d < k, thus,
λ(H − F, k) > 0. Further, from the minimality of E(A1, . . . , Ak, H − F ), and the fact that
|E(A1, . . . , Ak, H − F )| ≥ 1, we have that H[Ai] is connected, and completely contained
inside one of Gj , j ∈ [d]. That is, E(A1, . . . , Ak, H − F ) further partitions some of the
connected components, and each connected component of H − E(A1, . . . , Ak, H − F ) is a
part in the partition (A1, . . . , Ak) of V (G).

Let Ei = E(Hi) ∩ E(A1, . . . , Ak, H − F ), i ∈ [d] and `i = |Ei|. Further, let Ai, i ∈ [d],
be the set of parts among A1, . . . , Ak, which are completely contained inside Gi. Note that
for all i, j ∈ [d], i 6= j, Ai and Aj are pairwise disjoint, and for all q ∈ [k], there exists an
integer j ∈ [d], such that Aq ∈ Aj . We summarize this in the following claim.

B Claim 4.10. Let ki = |Ai|, then
∑d
i=1 ki = k.

Next we have the following claim.

B Claim 4.11. For all i ∈ [d], ki ≤ k′, λ(Hi − F, ki) = `i. Further,
∑
i=1 `i = `.

Proof. No ki can be more than k′, otherwise we get strictly greater than k components,
contradicting that H − F − E(A1, . . . , Ak, H − F ) has exactly k components. Further, for
some i, let λ(Hi, ki) = `′i < `i. In this case, we can delete `′i edges inside Gi, and delete Ej ,
j 6= i, to get k components in H − F , by deleting strictly less than ` edges. This contradicts
the definition of E(A1, . . . , Ak, H − F ). By definition

∑
i=1 `i = `. C
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λ(H − F, k) =
d∑
i=1

λ(Hi − F, ki) (Claim 4.11)

≥
d∑
i=1

λ(Gi − F, ki) (Claim 4.9)

= λ(G− F, k).

To see the last inequality observe the following. Let Wi be a subset of edges in E(Gi) such
that |Wi| = λ(Gi − F, ki). Then, clearly by deleting W = ∪di=1Wi, we get

∑d
i=1 ki = k

components in G− F . Here, we used Claim 4.10 to conclude that
∑d
i=1 ki = k. This implies

that
∑d
i=1 λ(Gi − F, ki) =

∑d
i=1 |Wi| is a k-cut of G− F (may not be of the minimum size).

Thus, a min k-cut in G− F can only be smaller. This concludes the correctness proof.

All that remains to show is the upper bound on the number of edges. Let the number
of vertices in each component be ni, i ∈ [d]. Then, the total number of edges in H is upper
bounded as follows.

|E(H)| ≤
d∑
i=1

(ni−1)(2f+`+1−k′) = (n−d)(2f+`+1−k′) = (n−d)(2f+`+2−k+d).

This concludes the proof. J

Proof of Theorem 1.4 follows from Lemmas 4.2, 4.3, 4.4, 4.7 and 4.8.

4.2 Lower Bound

In this section we show that the upper bound shown on Ft-k-cs(n, `, f) in Section 4.1 is
indeed asymptotically tight. To prove Theorem 1.5, we construct an infinite family of graphs
G, such that for any G ∈ G we have that any f -FT-k-CS of G must contain all its edges. In
particular, for any positive integers n, `, f , such that n−`−1

`+f−(k−2) is an integer, we construct a
graph G on n vertices and (n−`−1)(`+f−k+1)

2 ) + n − ` + k − 3 + (`−k+3)(`−k+2)
2 edges with

λ(G, k) = `, such that any f -FT-k-CS of G must contain all the edges of G.

The graph G is a modification of the graph used to show the lower bound for global
minimum cut in Section 3.2.
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C1 C2
C (n−`−1)

`+f−(k−2)

a1

a2 a3

a`−(k−2)+1

a4

x1
x2

xk−3

xk−2

X1

X2

X3

Figure 2 Vertex a1 has degree n−`−1 within X1. In X2 the vertices a1, a2, ..., a`−(k−2)+1 induce
a clique. The vertex a4 has k− 2 edges in X3 each going to a separate vertex xi. There are no edges
between x′is. C1, C2, ..., C (n−`−1)

`+f−(k−2)
represent (n−`−1)

`+f−(k−2) cliques each of size `+ f − (k − 2) within
X1.

Construction of a graph G. Here, q = n−`−1
`+f−(k−2) .

The vertex set V (G) is a union of X1, X2 and X3, such that |X1 ∩X2| = 1.
X1 has q pairwise vertex disjoint cliques C1, . . . , Cq. Each clique Ci is on (`+ f −
(k − 2)) vertices. (The edges of the cliques, C1, . . . , Cq are denoted by the solid
blue edges in Figure 2.)
The set X2 consists of a1, . . . , a`−(k−2)+1 vertices that form a clique. These
vertices do not belong to the cliques, C1, . . . , Cq. (The edges of the clique on
a1, . . . , a`−(k−2)+1 are represented by blue solid edges in X2 in Figure 2.)
Let a1 ∈ X2 be a fixed vertex. All the vertices in a clique Ci, i ∈ [q], is adjacent
to the vertex a1. There are no edges between a pair of vertices belonging to two
distinct cliques, Ci and Cj . The vertex a1 is the only common vertex between two
sets X1 and X2. (Edges between a1 and the vertices in the cliques, C1, . . . , Cq,
are represented by the red dotted edges in Figure 2.)
X3 consists of k − 2 vertices xi, i ∈ [k − 2]. Let a4 ∈ X2 be a fixed vertex. Edges
in X3 are of the form (a4, xi), i ∈ [k− 2]. There are no edges between x′is. (Edges
between a4 and the vertices xi ∈ X3, are represented by the red solid edges in
Figure 2.)

In the upcoming lemmas we show certain properties of our construction.

I Lemma 4.12. The number of edges in G is (n−`−1)(`+f−k+1)
2 )+n−`+k−3+ (`−k+3)(`−k+2)

2 .

Proof. Each clique Ci is of size (`+ f − (k − 2)) and contributes (`+ f − (k − 2))( `+f−k+1
2 )

edges. There are q cliques and thus the total number of edges contributed by all cliques
Ci, i ∈ [q] is (n − ` − 1)( `+f−k+1

2 ). The vertex a1 is adjacent to all vertices of all C ′is.
Hence, a1 has degree n− `− 1 inside X1. The (`− (k − 2) + 1)−clique in X2 contributes
(`−k+3)(`−k+2)

2 edges. The vertex a4 contributes k − 2 edges in X3. Therefore, the total
number of edges of G is (n−`−1)(`+f−k+1)

2 ) + n− `+ k − 3 + (`−k+3)(`−k+2)
2 . J
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I Lemma 4.13. For any two vertices u1, u2 ∈ X1, λ(u1, u2) ≥ `+ f − k + 2.

Proof. The pair {u1, u2} is of one of the three types described below. We prove the claim
for each of the three types.

Both u1 and u2 are part of the same clique Ci in X1. We know that the size of Ci
is ` + f − k + 2. Let the other vertices in Ci be uj , j ∈ [3, ` + f − k + 2]. Then
u1uju2, j ∈ [3, ` + f − k + 2], u1, u2 and u1a1u2 are ` + f − k + 2 edge-disjoint paths
between u1 and u2. By Theorem 2.1 λ(u1, u2) ≥ `+ f − k + 2.
Vertices u1 ∈ Ci and u2 ∈ Cj , and i 6= j. Let vj , j ∈ [`+f−k+1] denote the vertices in Cj
other than u2. Let w1 be a vertex in Ci other than u1. Then u1a1vju2, j ∈ [`+ f − k+ 1]
and u1w1a1u2 are `+ f − k + 2 edge-disjoint paths between u1 and u2. By Theorem 2.1
λ(u1, u2) ≥ `+ f − k + 2.
Let u1 be a part of clique Ci and u2 = a1. Let vj , j ∈ [`+ f −k+ 1] denote the vertices in
Ci other than u1. Then u1vja1, j ∈ [`+ f −k+ 1] and u1a1 are `+ f −k+ 2 edge-disjoint
paths between u1 and a1. By Theorem 2.1 that λ(u1, u2) ≥ `+ f − k + 2.

This concludes the proof. J

I Lemma 4.14. Let G be a graph and f ≥ 1 be a positive integer. Then λ(G, k) = `. Further,
for any F ⊆ E(G[X1]) of size at most f , we have that λ(G− F, k) = `.

Proof. Vertices xi, i ∈ [k− 2] in X3 have degree 1 with all of them adjacent to a4. The edges
E(x,X1 ∪X2, G) for all x = xi, i ∈ [k − 2] partition the graph into k − 1 components using
k − 2 edges. As a minimum of k − 2 edges are required to partition a connected graph into
k − 1 components all these edges will be part of λ(G, k). We need one more partition of the
graph to get k components.

The cut E({a}, X1 ∪X2 \ {a}, G), where a = ai for i ∈ [` − k + 3] is of size ` − k + 2.
Together, with the edges E(x,X1 ∪X2, G) for all x = xi, i ∈ [k − 2] we get a k−cut of G of
size `.

Now we show that any other cut if of size at least `. From Lemma 4.13 we know
that for any two vertices u1, u2 ∈ X1, λ(u1, u2) ≥ ` + f − k + 2. This implies that for
any 2 partitions A,B of V (G) such that |X1 ∩ A| ≥ 1 and |X1 ∩ B| ≥ 1 we have that
|E(A,B,G)| ≥ `+f −k+ 2 ≥ `−k+ 3. In this case, λ(G−F, k) ≥ `−k+ 3 + (k−2) = `+ 1.
Thus, any min-k-cut should keep all of X1 in one side of the partition. It can be easily
checked that |E(X1 ∪ Y,X2 \ Y,G)| ≥ `− k + 2 for any Y ⊆ X2, with the minimum being
achieved when Y is a singleton set. These edges along with k − 2 edges from X3 shows that
λ(G, k) = `. This concludes the first part of the proof.

Let F ⊆ E(G[X1]) of size at most f and Ai, i ∈ [k] be a partitioning of V (G). We will
show that |E(A1, ..., Ak, G− F )| ≥ `. Indeed, if |X1 ∩ Ai| ≥ 1 and |X1 ∩ Aj | ≥ 1 for i 6= j,
we have that |E(Ai, Aj , G− F )| ≥ `− k + 2 (since, |E(Ai, Aj , G)| ≥ `+ f − k + 2). These
edges alongwith the k − 2 edges (a4, xi), i ∈ [k − 2] give |E(A1, ..., Ak, G − F )| ≥ `. Thus,
let us assume that all of X1 in one side of the partition. Again in this case, we can easily
check that |E(X1 ∪ Y,X2 \ Y,G− F )| ≥ `− k + 2 for any Y ⊆ X2, with the minimum being
achieved when Y is a singleton set. Alongwith the edges (a4, xi), i ∈ [k − 2], we have that
|E(A1, ..., Ak, G− F )| ≥ `. Thus, λ(G− F, k) = `. This concludes the proof. J

We now prove the final property of an f -FT-k-CS.

I Lemma 4.15. Any f -FT-k-CS of G must contain all the edges of G.

Proof. Let H be an f -FT-k-CS of G. We will show that H must contain all edges of G.
Towards this, we partition the edges of G into four parts, and show that all these edges are
required in H. In particular, we show that if H does not include an edge of G, then there is
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a strategy for the adversary to choose a subset F of edges (of size at most f) to delete from
G such that λ(G− F, k) and λ(H − F, k) are not the same. Let ui, i ∈ [`+ f − k + 2)], be
the set of vertices of a fixed clique Cj .

(i) We first show that the edges in the cliques Ci, i ∈ [q] in X1 are present in H(the solid
blue edges in X1 in Figure 2). Each ui has degree `+ f − k + 1 within Cj apart from
an edge to ai. Suppose an edge (uy, uz), y, z ∈ [`+ f − k + 2], y 6= z is not present in
H. Let F consist of any f edges adjacent to uz in Cj other than (uy, uz). We know
that f edges exist as ` ≥ k − 1 (by construction G is connected).
Now by Lemma 4.14 we know that λ(G − F, k) = `. But the degree of uz in H − F
becomes ` − k + 1 as (uy, uz) /∈ H − F . In H − F , we will choose all the remaining
adjacent edges of uz and the k−2 edges inX3 as our cut edges. Thus, λ(H−F, k) = `−1.
This contradicts H being an f -FT-k-CS of G. Therefore, all edges of the cliques Ci
must be present in H.

(ii) Next, we show that the edges E({a1}, Ci, G) are present in H(the red dotted edges in
X1 in Figure 2). Suppose (uz, a1), z ∈ [`+ f − k+ 2] is not present in H. Let F consist
of any f edges adjacent to uz in Cj other than (uz, a1). By Lemma 4.14, we know that
λ(G − F ) = ` but λ(H − F ) = ` − 1. A similar argument to case (i), shows that all
such edges E({a1}, Ci, G) must be present in H.

(iii) Next, let us show that the edges in the `−k+3-clique in X2 formed by ai, i ∈ [`−k+3]
are present in H(the dashed blue edges in X2 in Figure 2). Suppose edge (ai, aj), i, j ∈
[` − k + 3], i 6= j is not present in H. Let F consist of any f edges of the form
(ui, a1), i ∈ [f ]. All these edges exist in G − F as ` + f − k + 2 ≥ f + 1 (Since G is
connected and ` ≥ k − 1).
By Lemma 4.14 we have that λ(G, k) = `. However, as ai and aj both have degree
`−k+1 insideX2 inH so E({ai}, X1∪X2\{ai}, H−F ) or E({aj}, X1∪X2\{aj}, H−F )
alongwith k − 2 edges in X3 give λ(H − F, k) = ` − 1. This contradicts H being an
f -FT-k-CS of G. Therefore, all edges of the `− k+ 3-clique in X2 must be present in H.

(iv) Lastly, we show that all the k − 2 edges E(x,X1 ∪X2, G) for all x = xi, i ∈ [k − 2] are
present in H(the solid red edges in X3 in Figure 2). Suppose an edge (a4, xz), z ∈ [k−2]
is not present in H. Let F consist of any f edges of the form (ui, a1), i ∈ [f ].
Again by Lemma 4.14 we have that λ(G−F, k) = `. However, as edge (a4, xz) /∈ H, we
have that λ(H −F, k) = `− 1. This contradicts H being an f -FT-k-CS of G. Therefore,
all k − 2 edges of X3 must be present in H.

All the cases together show that all edges of the graph G must be present in H if H is an
f -FT-k-CS of G. Thus, the total number of edges present in H is (n−`−1)(`+f−k+1)

2 ) + n−
`+ k − 3 + (`−k+3)(`−k+2)

2 . Our proof follows. J

Proof of Theorem 1.5 follows from Lemmas 4.12, 4.14 and 4.15.
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