769 research outputs found

    Security and risk analysis in the cloud with software defined networking architecture

    Get PDF
    Cloud computing has emerged as the actual trend in business information technology service models, since it provides processing that is both cost-effective and scalable. Enterprise networks are adopting software-defined networking (SDN) for network management flexibility and lower operating costs. Information technology (IT) services for enterprises tend to use both technologies. Yet, the effects of cloud computing and software defined networking on business network security are unclear. This study addresses this crucial issue. In a business network that uses both technologies, we start by looking at security, namely distributed denial-of-service (DDoS) attack defensive methods. SDN technology may help organizations protect against DDoS assaults provided the defensive architecture is structured appropriately. To mitigate DDoS attacks, we offer a highly configurable network monitoring and flexible control framework. We present a dataset shift-resistant graphic model-based attack detection system for the new architecture. The simulation findings demonstrate that our architecture can efficiently meet the security concerns of the new network paradigm and that our attack detection system can report numerous threats using real-world network data

    Mechanism design for distributed task and resource allocation among self-interested agents in virtual organizations

    Get PDF
    The aggregate power of all resources on the Internet is enormous. The Internet can be viewed as a massive virtual organization that holds tremendous amounts of information and resources with different ownerships. However, little is known about how to run this organization efficiently. This dissertation studies the problems of distributed task and resource allocation among self-interested agents in virtual organizations. The developed solutions are not allocation mechanisms that can be imposed by a centralized designer, but decentralized interaction mechanisms that provide incentives to self-interested agents to behave cooperatively. These mechanisms also take computational tractability into consideration due to the inherent complexity of distributed task and resource allocation problems. Targeted allocation mechanisms can achieve global task allocation efficiency in a virtual organization and establish stable resource-sharing communities based on agentsâÃÂàown decisions about whether or not to behave cooperatively. This high level goal requires solving the following problems: synthetic task allocation, decentralized coalition formation and automated multiparty negotiation. For synthetic task allocation, in which each task needs to be accomplished by a virtual team composed of self-interested agents from different real organizations, my approach is to formalize the synthetic task allocation problem as an algorithmic mechanism design optimization problem. I have developed two approximation mechanisms that I prove are incentive compatible for a synthetic task allocation problem. This dissertation also develops a decentralized coalition formation mechanism, which is based on explicit negotiation among self-interested agents. Each agent makes its own decisions about whether or not to join a candidate coalition. The resulting coalitions are stable in the core in terms of coalition rationality. I have applied this mechanism to form resource sharing coalitions in computational grids and buyer coalitions in electronic markets. The developed negotiation mechanism in the decentralized coalition formation mechanism realizes automated multilateral negotiation among self-interested agents who have symmetric authority (i.e., no mediator exists and agents are peers). In combination, the decentralized allocation mechanisms presented in this dissertation lay a foundation for realizing automated resource management in open and scalable virtual organizations

    A Comparative Study of Scheduling Techniques for Multimedia Applications on SIMD Pipelines

    Full text link
    Parallel architectures are essential in order to take advantage of the parallelism inherent in streaming applications. One particular branch of these employ hardware SIMD pipelines. In this paper, we analyse several scheduling techniques, namely ad hoc overlapped execution, modulo scheduling and modulo scheduling with unrolling, all of which aim to efficiently utilize the special architecture design. Our investigation focuses on improving throughput while analysing other metrics that are important for streaming applications, such as register pressure, buffer sizes and code size. Through experiments conducted on several media benchmarks, we present and discuss trade-offs involved when selecting any one of these scheduling techniques.Comment: Presented at DATE Friday Workshop on Heterogeneous Architectures and Design Methods for Embedded Image Systems (HIS 2015) (arXiv:1502.07241

    Design Space Exploration for MPSoC Architectures

    Get PDF
    Multiprocessor system-on-chip (MPSoC) designs utilize the available technology and communication architectures to meet the requirements of the upcoming applications. In MPSoC, the communication platform is both the key enabler, as well as the key differentiator for realizing efficient MPSoCs. It provides product differentiation to meet a diverse, multi-dimensional set of design constraints, including performance, power, energy, reconfigurability, scalability, cost, reliability and time-to-market. The communication resources of a single interconnection platform cannot be fully utilized by all kind of applications, such as the availability of higher communication bandwidth for computation but not data intensive applications is often unfeasible in the practical implementation. This thesis aims to perform the architecture-level design space exploration towards efficient and scalable resource utilization for MPSoC communication architecture. In order to meet the performance requirements within the design constraints, careful selection of MPSoC communication platform, resource aware partitioning and mapping of the application play important role. To enhance the utilization of communication resources, variety of techniques such as resource sharing, multicast to avoid re-transmission of identical data, and adaptive routing can be used. For implementation, these techniques should be customized according to the platform architecture. To address the resource utilization of MPSoC communication platforms, variety of architectures with different design parameters and performance levels, namely Segmented bus (SegBus), Network-on-Chip (NoC) and Three-Dimensional NoC (3D-NoC), are selected. Average packet latency and power consumption are the evaluation parameters for the proposed techniques. In conventional computing architectures, fault on a component makes the connected fault-free components inoperative. Resource sharing approach can utilize the fault-free components to retain the system performance by reducing the impact of faults. Design space exploration also guides to narrow down the selection of MPSoC architecture, which can meet the performance requirements with design constraints.Siirretty Doriast

    From MARTE to Reconfigurable NoCs: A model driven design methodology

    Get PDF
    Due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless methodologies and tools to handle the SoC co-design aspects. We address this issue and propose a novel SoC co-design methodology based on Model Driven Engineering and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by Object Management Group, to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs. In this paper, we present a high level modeling approach that targets modern Network on Chips systems. The overall objective: to perform system modeling at a high abstraction level expressed in Unified Modeling Language (UML); and afterwards, transform these high level models into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    The Nornir run-time system for parallel programs using Kahn process networks on multi-core machines – A flexible alternative to MapReduce

    Get PDF
    Even though shared-memory concurrency is a paradigm frequently used for developing parallel applications on small- and middle-sized machines, experience has shown that it is hard to use. This is largely caused by synchronization primitives which are low-level, inherently non-deterministic, and, consequently, non-intuitive to use. In this paper, we present the Nornir run-time system. Nornir is comparable to well-known frameworks such as MapReduce and Dryad that are recognized for their efficiency and simplicity. Unlike these frameworks, Nornir also supports process structures containing branches and cycles. Nornir is based on the formalism of Kahn process networks, which is a shared-nothing, message-passing model of concurrency. We deem this model a simple and deterministic alternative to shared-memory concurrency. Experiments with real and synthetic benchmarks on up to 8 CPUs show that performance in most cases scales almost linearly with the number of CPUs, when not limited by data dependencies. We also show that the modeling flexibility allows Nornir to outperform its MapReduce counterparts using well-known benchmarks. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited

    A Crowdsourcing Approach to Promote Safe Walking for Visually Impaired People

    Get PDF
    [[abstract]]Visually impaired people have difficulty in walking freely because of the obstacles or the stairways along their walking paths, which can lead to accidental falls. Many researchers have devoted to promoting safe walking for visually impaired people by using smartphones and computer vision. In this research we propose an alternative approach to achieve the same goal - we take advantage of the power of crowdsourcing with machine learning. Specifically, by using smartphones carried by a vast amount of visually normal people, we can collect the tri-axial accelerometer data along with the corresponding GPS coordinates in large geographic areas. Then, machine learning techniques are used to analyze the data, turning them into a special topographic map in which the regions of outdoor stairways are marked. With the map installed in the smartphones carried by the visually impaired people, the Android App we developed can monitor their current outdoor locations and then enable an acoustic alert whey they are getting close to the stairways.[[notice]]補正完

    Mechanism design for distributed task and resource allocation among self-interested agents in virtual organizations

    Get PDF
    The aggregate power of all resources on the Internet is enormous. The Internet can be viewed as a massive virtual organization that holds tremendous amounts of information and resources with different ownerships. However, little is known about how to run this organization efficiently. This dissertation studies the problems of distributed task and resource allocation among self-interested agents in virtual organizations. The developed solutions are not allocation mechanisms that can be imposed by a centralized designer, but decentralized interaction mechanisms that provide incentives to self-interested agents to behave cooperatively. These mechanisms also take computational tractability into consideration due to the inherent complexity of distributed task and resource allocation problems. Targeted allocation mechanisms can achieve global task allocation efficiency in a virtual organization and establish stable resource-sharing communities based on agentsâÃÂàown decisions about whether or not to behave cooperatively. This high level goal requires solving the following problems: synthetic task allocation, decentralized coalition formation and automated multiparty negotiation. For synthetic task allocation, in which each task needs to be accomplished by a virtual team composed of self-interested agents from different real organizations, my approach is to formalize the synthetic task allocation problem as an algorithmic mechanism design optimization problem. I have developed two approximation mechanisms that I prove are incentive compatible for a synthetic task allocation problem. This dissertation also develops a decentralized coalition formation mechanism, which is based on explicit negotiation among self-interested agents. Each agent makes its own decisions about whether or not to join a candidate coalition. The resulting coalitions are stable in the core in terms of coalition rationality. I have applied this mechanism to form resource sharing coalitions in computational grids and buyer coalitions in electronic markets. The developed negotiation mechanism in the decentralized coalition formation mechanism realizes automated multilateral negotiation among self-interested agents who have symmetric authority (i.e., no mediator exists and agents are peers). In combination, the decentralized allocation mechanisms presented in this dissertation lay a foundation for realizing automated resource management in open and scalable virtual organizations
    • …
    corecore