16,163 research outputs found

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Finite Bisimulations of Controllable Linear Systems

    Get PDF
    Finite abstractions of infinite state models have been critical in enabling and applying formal and algorithmic verification methods to continuous and hybrid systems. This has triggered the study and characterization of classes of continuous dynamics which can be abstracted by finite transition systems. In this paper, we focus on synthesis rather than analysis. In this spirit, we show that given any discrete-time, linear control system satisfying a generic controllability property, and any finite set of observations restricted to the boolean algebra of Brunovsky sets, a finite bisimulation always exists and can be effectively computed

    HyPLC: Hybrid Programmable Logic Controller Program Translation for Verification

    Full text link
    Programmable Logic Controllers (PLCs) provide a prominent choice of implementation platform for safety-critical industrial control systems. Formal verification provides ways of establishing correctness guarantees, which can be quite important for such safety-critical applications. But since PLC code does not include an analytic model of the system plant, their verification is limited to discrete properties. In this paper, we, thus, start the other way around with hybrid programs that include continuous plant models in addition to discrete control algorithms. Even deep correctness properties of hybrid programs can be formally verified in the theorem prover KeYmaera X that implements differential dynamic logic, dL, for hybrid programs. After verifying the hybrid program, we now present an approach for translating hybrid programs into PLC code. The new tool, HyPLC, implements this translation of discrete control code of verified hybrid program models to PLC controller code and, vice versa, the translation of existing PLC code into the discrete control actions for a hybrid program given an additional input of the continuous dynamics of the system to be verified. This approach allows for the generation of real controller code while preserving, by compilation, the correctness of a valid and verified hybrid program. PLCs are common cyber-physical interfaces for safety-critical industrial control applications, and HyPLC serves as a pragmatic tool for bridging formal verification of complex cyber-physical systems at the algorithmic level of hybrid programs with the execution layer of concrete PLC implementations.Comment: 13 pages, 9 figures. ICCPS 201

    Sciduction: Combining Induction, Deduction, and Structure for Verification and Synthesis

    Full text link
    Even with impressive advances in automated formal methods, certain problems in system verification and synthesis remain challenging. Examples include the verification of quantitative properties of software involving constraints on timing and energy consumption, and the automatic synthesis of systems from specifications. The major challenges include environment modeling, incompleteness in specifications, and the complexity of underlying decision problems. This position paper proposes sciduction, an approach to tackle these challenges by integrating inductive inference, deductive reasoning, and structure hypotheses. Deductive reasoning, which leads from general rules or concepts to conclusions about specific problem instances, includes techniques such as logical inference and constraint solving. Inductive inference, which generalizes from specific instances to yield a concept, includes algorithmic learning from examples. Structure hypotheses are used to define the class of artifacts, such as invariants or program fragments, generated during verification or synthesis. Sciduction constrains inductive and deductive reasoning using structure hypotheses, and actively combines inductive and deductive reasoning: for instance, deductive techniques generate examples for learning, and inductive reasoning is used to guide the deductive engines. We illustrate this approach with three applications: (i) timing analysis of software; (ii) synthesis of loop-free programs, and (iii) controller synthesis for hybrid systems. Some future applications are also discussed
    corecore