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Abstract
Finite abstractions of infinite state models have been critical in enabling and applying formal and algorithmic
verification methods to continuous and hybrid systems. This has triggered the study and characterization of
classes of continuous dynamics which can be abstracted by finite transition systems. In this paper, we focus on
synthesis rather than analysis. In this spirit, we show that given any discrete-time, linear control system
satisfying a generic controllability property, and any finite set of observations restricted to the boolean algebra
of Brunovsky sets, a finite bisimulation always exists and can be effectively computed.
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Abstract  

Finite abstractions of infinite state models have been 
critical in enabling and applying formal and algorith- 
mic verification methods to continuous and hybrid sys- 
tems. This has triggered the study and characteriza- 
tion of classes of continuous dynamics which can be ab- 
stracted by finite transition systems. In this paper, we 
focus on synthesis rather than analysis. In this spirit, 
we show that given any discrete-time, linear control 
system satisfying a generic controllability propertmy, and 
any finite set of observations restricted to  the boolean 
algebra of Brunovsky sets, a finite bisimulation always 
exists and can be effectively computed. 

1 Introduction 

Algorithmic approaches to formally verifying continu- 
ous and hybrid systems have critically relied on extract- 
ing finite-state abstractions while preserving properties 
expressible in suitable temporal logics. This has been 
achieved by constructing finite bisimulations, which are 
finite partitions of the infinite state space that preserve 
a finite set of observations as well as reachability prop- 
erties. It is well known that bisimilar systems have 
equivalent properties expressible in various temporal 
logics. If a hybrid system is bisimilar to  a finite state 
system, then verification of the hybrid system can be 
equivalently performed on the purely discrete system. 

In the hybrid systems community, t,his approach 
has originated with the seminal work on timed au- 
tomata [l], that was subsequent extended to rectangu- 
lar hybrid automata [9]. Linear differential equations 
with special eigenstructure for which finite abstrac- 
tions exist were introduced in [lo] by combining tools 
from geometric model theory and linear systems the- 
ory. Nonlinear dynamics were considered in [4] where 
integrals of motion were used t,o defined bisimulations. 
In the linear case, these integrals can be obtained by 
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exploit<ing the Brunovsky normal form of controllable 
systems for constant inputs. Although finite bisimu- 
lations can be obtained, it is not clear how to patch 
such bisimulations for different values of the control 
inputs. The survey paper [2] describes the boundary 
between hybrid systems with decidable and undecid- 
able model checking problems. Controller synthesis 
techniques for hybrid systems include, among many 
others, supervisory control based on approximate fi- 
nite abstractions [7], logic based synthesis [12], invari- 
ants for the continuous dynamics [13], convexity prop- 
erties of &ne systems [8], and mixed integer linear pro- 
gramming [3]. Closer to our approach is the work de- 
scribed in [16] where sufficient conditions are provided 
to finitely compute controlled invariant sets. Although 
we essentially use the same controllability conditions, 
this paper focuses on finite bisimulations rather than 
controlled invariant sets. 

In this paper, we take a novel yet algorithmic ap- 
proach to hybrid system synthesis rather than hybrid 
system analysis. The focus on synthesis differentiates 
our approach from all previously mentioned verifica- 
tion approaches. Furthermore, we focus on the essence 
of computability which is the continuous dynamics of 
hybrid systems. Since we take a synthesis approach, 
we assume that we are given continuous control sys- 
tems rather than continuous dynamical systems. In 
particular, in this paper, we identify critical proper- 
ties of discrete time control systems ensuring the exis- 
tence of finite bisimilar quotients : system controllabil- 
ity, and compatibility between finite observations and 
the controlled dynamics. We discuss in detail discrete- 
time, linear control systems and the boolean algebra 
of Brunovsky sets, showing that this class satisfies the 
required assumptions. In addition, we also show that 
finite bisimilar quotients of systems in this class not 
only exist, but they are also effectively computable. 

The contributions presented in this paper extend our 
previous work described in [15] where we have only 
considered language equivalent finite abstractions. We 
thus strengthen language equivalence to bisimulation 
while enlarging the class of observations for which fi- 
nite bisimulations can be constructed. In the dual pa- 
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per 1141, we show how finite controllers for the finitme, 
bisimilar systems can be refined to controllers for the 
original model. Therefore, this paper in conjunction 
with [14] and known temporal logic synt,hesis proce- 
dures results in the algorithmic synt,hesis of controllers 
for discrete-time, controllable linear systems with re- 
spect to temporal logic specifications. 

2 Transition systems and boolean algebras 

2.1 Transition systems 

Definition 2.1 A transition system with observations 
is a tuple T = (Q, -, 0, H ) ,  where: 

e Q is a (possibly infinite) set of states, 

e -+C Q x Q is a transition relation, 

e 0 is a (possibly infinite) set of observations, 

e H : Q 4 0 is a map assigning to  each q E Q an 
observation H(q) E 0. 

We say that T is finite when Q, 0 are finite, and infinite 
otherwise. We will usually denote by q - q’ a pair 
(4,  4’) belonging to -. As we will only consider tran- 
sition systems with observations, we shall refer to them 
simply as transition systems. Given a state q E Q, we 
denote by Pre(q) the set of states in Q that can reach 
q in one step, t,hat is: 

Pre(q) = {q’ E Q : q’ - q }  

We extend Pre to sets Q’ C Q in the usual way: 

Pre(Q’) = U Pre(q’) 
q’EQ’  

Finally, we recursively define Prei (Q’) by: 

Pre’(Q’) = Pre(Q’) Prei(Q’) = Pre(PreZ-’(Q‘)) 

The main objective of this paper is t,o partition the 
stmates of a transition system while preserving various 
system properties. We start by defining partitions. 

Definition 2.2 A collection of sets rI = Uicr{Si} is 
called a partition of S if UiErSi  = S and Si n Sj = 0 
for  i # j .  A partition is called finite i f  I is finite. Given 
two partitions II1 and of S ,  IT2 is a refin,ement of 
partition rI1 i f f o r  every S2 E II2 there exists a. S1 E II1 
such that S2 E S1. 

Bisimulat,ions are partitions which preserve both obser- 
vations and transitions. 
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Definition 2.3 (Bisimulation) Let T = (0,-  
,0, H) be a transition system and II = UiGl{Si} a par- 
tition of Q. Partition II is called a bisimulation when 
q1,q2 E Si implies: 

H(q1) = H(q2) ,  

e ifq1 - qi there exists a q& such that 42 - qk 
and q i ,  q; E Sit for  some i’ E I .  

Bisimulatioiis are also equivalence relations’ on Q, and 
they induce a well defined transition system on the quo- 
tient space Qn. For a given q E Q, we denote by S(q) 
the equivalence class S E II containing q, and denote 
by Qn the set n. The quotient transition system in- 
duced by n, Tn = (Qn, +n, 0, Hn), is then defined 
by: 

Qn = II, 

e --+nG Qn x Qn, defined by Si -n Sit iff there 
exist q E Si and q‘ E Si! such that q - q’, 

Hn : Q/II 3 0 defined by Hn(S(q)) = H ( q ) .  

We note that Hn is well defined since II respects obser- 
vations, that is, S(q) = S(q’) + H(q) = H(q’). As the 
stat,es of Tn are given by Qn = II, a finit,e quotient is 
obtained when the partition II is also finitme. When IT 
is a bisimulation, it is straightforward that T is bisim- 
ilar [ll] to Tn by the relation R C_ Q x Qn defined 
by (4, S )  E R iff q E S. Bisimulations are important as 
they preserve properties expressible in several temporal 
logics such as LTL, CTL, CTL* or p-calculus [5]. 

2.2 Boolean algebras and stable partitions 
We now obtain some conditions at the level of boolean 
algebras that imply the existence of finite bisimula- 
tions. The conditions obtained in this section will be 
more natural and directly applicable t,o the main goals 
of this paper. 

Definition 2.4 A Boolean algebra of subsets of a set 
S ,  denoted by  B(S) ,  is a nonempty collection of subsets 
of S that is closed under union and complementation, 
that is SI U S 2  E D(S) and % = S\S1 E B ( S )  f o r  every 
Sl, s 2  E B(S) .  

Note that the above definition implies that IZI, S E B ( S )  
and also that A n B E B(S) .  Boolean algebra endomor- 
phisms are defined as follows: 

Definition 2.5 A map F : B ( S )  + B ( S )  is called a 
Boolean algebra endomorphism i f  F ( A  U B )  = F ( A )  U 
F ( B )  and F ( 2 )  = F ( A )  for  every A, B E B(S) .  

’Each set Si is regarded as an equivalence class. 



A Boolean algebra endomorphism is called eventually 
idempotent i f  there exists a k E M such that Fk+’ = F k ,  
where F k  denotes k- th  iterate of F .  

Finally, we define stable partitions under a Boolean 
algebra endomorphism. 

Definition 2.6 Let F : B ( S )  -+ B ( S )  be a Boolean 
algebra endomorphism and II a partition of S .  Par- 
tition II is  called stable under F i f  for  any Si E IT, 
F(S2) = U j E J S j .  

Using the above definition, we can define a bisimulation 
as a stable (under Pre) partition of Q that, in addition, 
preserves observations. The following theorem gives us 
conditions for the existence of finite, stable partitions. 

Theorem 2.7 Let F : B ( S )  + B(S)  be a Boolean al- 
gebra endomorphism. If F as eventually idempotent 
and II C B(Wn) i s  a finite partition of S ,  then a 8- 
nite and stable (under F )  refinement of IT exists. 

Proof: Assume that = p ,  let a : {0,1} x B ( S )  --f 
B(S)  be the function defined by a(0 ,S i )  = and 
Q(1,Si)  = Si, and let V be the set V = {O,l}Pxk. 
Each element v E V is a p x k mat,rix of zeros and ones. 
The element ( a ,  b) of such matrix is denoted by Vab. 

We now consider the refinement of II defined by slicing 
each set Si E II as Si = UVEvS;, where S; is defined 
by: 

~k 

s: = Si n n n Q(Vab,Fb(Sa)) 
a=l b=l 

Intuitively, the sets Sr represent the subsets of Si de- 
fined by the points t,hat can reach Sa in b steps when 
vab = 1 and cannot reach sa in b steps when vab = 0. 
We now show that IIv = UvEI: uiE(l,2 ,..., SF is stable 
under F .  Consider any S;, Sz E IIv and assume that 
S$ n F ( S r )  # 0. We have that F(S,V) is given by: 

where we have used the fact that F is a Boolean al- 
gebra endomorphism and the fact that F is eventually 
idempotent. Equation (2.1) shows that: 

.hb = Vab-1 for 2 5 b 5 k (2.2) 
vi1 = 1 (2.3) 

Consider now any poiiit x E S$. Such point satisfies 
the reachability properties expressed by (2.2) and (2.3) 
and consequently x E F(S:). This shows that S$ n 
F(S,V) # 0 + S$ G F(SF). Let now 2 be t,he subset 
of I x V defined by (2 ,  U’) E 2 iff S$ n F(S;)  # 0. It 
then follows that: 

F(S:) = U s$ 
( i ’ , V ’ ) E Z  

To conclude the proof we only need to show that llv is 
finite, however this follows immediately from the fact 
that V is finite. 

Theorem 2.7 will be our main tool in order to show that 
finite bisimulations exist for linear control systems and 
the Boolean algebra of Brunovsky sets. 

3 Finite bisimulations of controllable systems 

In this section we show that finite bisimulat,ions of dis- 
crete time linear systems exist provided t,hat a control- 
lability assumption is satisfied, and that we work with 
a carefully chosen Boolean algebra of sets. 

3.1 Controllable linear systems 
A discrete time linear system: 

C : z(t + 1) = Ax(t)  + Bu(t)  

wit,h x E W n ,  U E Bm, A E Qnxn and B 
defines an infinite transition system: 

TE = (W”, -E, o x ,  HE) 

E Qnxm 

where -cC_ Bn x Bn is defined by x -E x’ iff there 
exists a U E E t m  such that x’ = Ax + Bu. To complete 
the definition of Tc we must also provide a finite obser- 
vation set Ox and the observation map H E .  Since we 
are interested in finite observations we naturally obtain 
the partition associated with observational equivalence. 
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Definition 3.1 Let Tc = ( R " , - c , O ~ , H ~ )  be a 
tramition system associated with a discrete time con- 
trol system C.  The partition of Rn defined by: 

U {HE1(4} 
OEOf 

where HG1 denotes the set-valued inverse of HE, that 
is, HE'(o) = {x E Rn Hc(z) = o}, is  called the 
observation partition. 

: 

A k , =  

The nature of the observation map HE will be carefully 
chosen in the next section depending on the structure 
of the control system. For now we will assume t,hat 
the observation partition is contained in some Boolean 
algebra of sets B(Rn). Controllability of the control 
system will be crucial in obtaining a finitme, stable re- 
finement of the observation partition. -0 1 0 ... 0 

; . . .  1 * * '  ' .  - .  bk, = 11 (3.2) 
0 0 0 ... 1 
0 0 0 ... 0 - 

Proposit ion 3.2 Let C be a discrete time linear con- 
trol system of dimension n and TE its associated tran- 
sition system. If C is controllable, then for  any x E R": 

Pren (z) = R" 

I n  particular ~ r e " + l ( z )  = Pren(z), hence Pre is even- 
tually idempotent. 

The previous result immediately suggest that one 
should regard t,he Pre operator as our Boolean alge- 
bra endomorphism. 

3.2 Brunovsky sets 
We must now provide a Boolean algebra of sets for 
which the Pre operator will be a Boolean algebra endo- 
morphism. When considering linear control systems it 
is nat,ural to consider the Boolean algebra of semi-linear 
sets (boolean combinations of affine (in)equalities), 
since this class of sets is closed under the Pre opera- 
tor. However, semi-linear sets do not satisfy, in general, 
P r e ( s )  = Pre(S1), hence the Pre operator is not an en- 
domorphism for the Boolean algebra of semi-linear sets. 
This motivates the study of a subclass of semi-linear 
sets which we now int,roduce, called Brunovsky sets, 
which satisfy this property. To introduce Brunovsky 
sets, we start by reviewing the Brunovsky normal form 
for controllable linear systems. 

Definition 3.3 (Brunovsky normal form) 
Consider a linear control system of dimension n 
with m inputs defined b y  the pair of m.atrices (A ,  B )  
and let k = (kl, k2, . . . , k,) be a segueme of integers 
sat is fying: 

k1 2 k2 2 . . . 2 k ,  A h-1 + k2 + . . . + k, = n (3.1) 

W e  say that the pair (A ,  B )  is in Brunovsky normal 
form i j  matrices A and B are of the following form: 

rbkl 0 ... 0 0 ... 01 
0 bkz ... 0 0 ... 01 

0 0 ... b k ,  0 ... 0 

. . .  . . .  . . .  e .  

Any controllable linear system can be effectively trans- 
formed to Bruiiovsky normal form by feedback and a 
change of state and input coordinates as assert,ed in the 
next result. 

Theorem 3.4 ([SI) For every controllable linear sys- 
tem, there exists a unique sequence of integers k = 
(k1, k2, . . . , k,.) satisfying (3. l),  a linear transformation 
G E Qmxn and invertible linear transformations F E 
QnXn and H E Qmxm such that the pair (A',B') = 
(F(A - BH-lG)F-l, FBH-') is in Brunovsky nor- 
mal form. 

Note that the transformed system E' = (A',B') is re- 
lated to  syst,em C = (A, B )  by an invertible state/input 
transformation U : W" x Rm + Rn x Wm with rational 
ent,ries: 

E:] = U [E] = [; O;m] [:I (3.3) 

where On,, is the n x m matrix of zeros. For syst,ems 
already in Brunovsky form, we consider the Boolean 
algebra of set,s that is generat,ed by (and are hence finite 
unions and complements of) the following elementary 
sets: 

where - i ~  {=,>}, 8i are &ne functions of the form 
*yj + cj with cj E Q, j E {1,2,. . . , n} and y j  denotes 
the j t h  component of vect,or y. Such sets satisfy the 
followiiig properties: 
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Proposit ion 3.5 Let C be a discrete time controllable 
linear system in Brunovsky normal form. Then, for  w 
any elementary set E of the form (3.4), Pre(E) is  given 
by: 

Since (3.7) equals (3.8), the desired identity is proved. 

Propositions 3.5 and 3.6 are now used to show that Pre 
{ y  E 1" I N 1  0 A . . . A & ( y )  N C  0) (3.5) is a endomorphism: 
A 

with f?(y) = fyi+l+ci for  some O(y) = f y i+c ,  defining 
E and i @ {kl, kl + k2,. . . , kl + k2 + . . . + k T } .  Hence, 
Pre transforms elementary sets into elementary sets. 

Proof:  From the Brunovsky normal form of C we see 
that there is a transition from y to y' iff yi+l = yi for 
i # {k l ,k l  + kz , .  . . , k l  + k2 + . . . + kr}. Consequently, 
y' satisfies &yi + c - 0, iff y sat,isfies fyi+l  + c - 0 
which leads to (3.5). W 

Proposit ion 3.6 Let C be a discrete time controllable 
linear system in Brunovsky normal form and B(Pn) 
the Boolean algebra generated by elementary sets of the 
form (3.4). Then the following equality holds: 

Pre(3) = Pre(S) VS E B(Rn) (3.6) 

Proof: We shall make use of the well known facts 
that elements of a boolean algebra can be writ,ten as 
unions of elementary sets and that Pre(S1 U S2) = 
Pre(S1) U Pre(S2) for any sets SI and 5'2 in order to 
prove equality (3.6). We shall only consider the case 

and Ej = {g  E P" I gj + d > 0) since the general case 
follows the same arguments. 

where S = Ei U Ej with Ei = { y  E P" I yi + c = 0) 

The complement of Ei can be written as the union of 
the following elementary sets: 

E: = { y  E P"~Y~+C > 0 )  E: = { y  E Pnl-yi-c > 0) 

Proposit ion 3.7 Let C be a discrete t ime controllable 
linear system in Brunovsky normal form.  Then, Pre 
is  a Boolean algebra endomorphism for  f3(Pn), the 
Boolean algebra generated by elementary sets of the 
form (3.4). 

Proof:  Let S E B(Rn), then Pre(S) = Pre(UiE1Ei) 
since any S E B(Pn) can be written as the union of 
elementary sets Ei of the form (3.4). As the equality 
Pre(S1 U S 2 )  = Pre(S1) U Pre(S2) is satisfied for any 
sets S1 and S2, it follows that Pre(S) = UiErPre(Ei) 
which by Proposition 3.5 is a union of elementary sets 
and therefore an element of B(Pn). This shows that 
Pre transforms elements in the Boolean algebra into 
elements of the Boolean algebra. 

It remains to show that Pre respects complement since 
Pre(SlUS2) = Pre(Sl)UPre(S?) is satisfied for any sets 
S1 and S2.  However, this is ensured by Proposition 3.6. 
w 

Proposition 3.7 shows that for the Boolean algebra 
B(P"), the Pre operator is a Boolean algebra endomor- 
phism. Even though the previous result holds for sys- 
tems already in Brunovsky normal form, we can trans- 
fer the previous results to all controllable linear systems 
not necessarily in Brunovsky form. This can be easily 
achieved using the isomorphism (3.3) which relates the 
original form and the Brunovsky normal form of any 
given controllable linear system. 

while the complement of E3 is given by the union of In Brunovsky coordinates, a constraint of the form 
fy, + Ca wZ 0, {=,>) can also be represented 

E; = { y  E P"ly3S-d = 0 )  E; = { y  E R"I-y,-d > 0) as: 
It then follows that: 

Pre(S) = = P r e ( m )  Pre((E: U E:) n (E; U E;)) 
w y + c - 0 ,  W E  {LIT, ElT,..., [ : I T }  

fl = 

= 

(Pre(E:) U Pre(E:)) n (Pre(E:) U Pre(E,')) 

@+l U E,z,l) n w;+1 U E;+,) (3.7) 
(3.9) 

where bT denotes the transpose of vector b. Since the 
Brunovsky coordinates are related to the original coor- 
dinates by an invertible linear transformation F x  = y, 

Consider now Pre(S): 

Pre(S) = P r e ( E f ~ E j )  

= Pre(Ei) U Pre(Ej) 
-- 

= Pre(Ei) n Pre(Ej) 

we can express (3.9) in the original coordinates, using 
the equality w y  = 2oFF-l y = w F x ,  as: 

f x + c - O ,  f E f { f i , . . .  , f n ) ,  "E{=,>) (3.10) -- 
where fi are the rows of matrix F .  This motivates the = E ~ + ~ ~ E ~ + ~  

= (Et+1 U E,?,,) n (Ej+l U (3.8) following definition. 
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Definition 3.8 Let C = (A, B )  be a discrete-time con- 
trollable linear system. W e  define the Boolean algebra 
of Brunovsky sets as the Boolean algebra generated by 
elementary sets of the form: 

{ Z E R V z  ~ d ~ ( ~ ) ~ 1 O A ~ ~ . A d a ( X ) - a O } ,  - i E { = , > }  

where the functions d i  are of the form &(x) = fx + c 
with f E 3z{ fi , .  , . , f,} and c E Q. 

Note that for systems already in Brunovsky normal 
forin, F = I,. Furthermore, the Boolean algebra of 
Brunovsky sets is system dependent, as the elementary 
sets critically depend of the matrix F ,  which in turn 
depends on system matrices A and B. The presented 
properties of linear control systems and Brunovsky sets 
allow us to directly apply Theorem 2.7. 

Theorem 3.9 Let Tc = (Rn, -E, O x ,  H E )  be a tran- 
sition system associated with a discrete-time linear con- 
trol system C.  If C is controllable and the observation 
partition is finite and contained in the Boolean, alge- 
bra of Brunovsky sets, then a finite bisimulation of Tx 
exists and is effectively computable. 

Theorem 3.9 places no conditions on the eigenstructure 
of the matrix A ,  which was necessary in the case of 
finite bisiinulations of linear dynamical syst,ems with 
finite (but semi-algebraic) sets [lo]. Theorem 3.9 also 
mot-ivates the use of observation maps of the form: 

and finit,e observation sets 0 = (0, l}'. 

4 Discussion 

In this paper, we have identified important properties 
leading to the existence of finite bisimilar quotients 
for discrete-time control systems. Finite bisimulations 
can be computed for the class of linear control sys- 
tems and Brunovsky sets. hiore general classes of sets 
and systems satisfying the important properties are the 
subject, of current research. Another direction for re- 
search focuses on efficiently approximating more gen- 
eral, semi-linear sets by Brunovsky sets. 
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