29 research outputs found

    Algorithmic luckiness

    No full text
    Classical statistical learning theory studies the generalisation performance of machine learning algorithms rather indirectly. One of the main detours is that algorithms are studied in terms of the hypothesis class that they draw their hypotheses from. In this paper, motivated by the luckiness framework of Shawe-Taylor et al. (1998), we study learning algorithms more directly and in a way that allows us to exploit the serendipity of the training sample. The main di erence to previous approaches lies in the complexity measure; rather than covering all hypotheses in a given hypothesis space it is only necessary to cover the functions which could have been learned using the xed learning algorithm. We show how the resulting framework relates to the VC, luckiness and compression frameworks. Finally, we present an application of this framework to the maximum margin algorithm for linear classi ers which results in a bound that exploits the margin, the sparsity of the resultant weight vector, and the degree of clustering of the training data in feature space

    On the importance of small coordinate projections

    No full text
    It has been recently shown that sharp generalization bounds can be obtained when the function class from which the algorithm chooses its hypotheses is “small” in the sense that the Rademacher averages of this function class are small. We show that a new more general principle guarantees good generalization bounds. The new principle requires that random coordinate projections of the function class evaluated on random samples are “small” with high probability and that the random class of functions allows symmetrization. As an example, we prove that this geometric property of the function class is exactly the reason why the two lately proposed frameworks, the luckiness (Shawe-Taylor et al., 1998) and the algorithmic luckiness (Herbrich and Williamson, 2002), can be used to establish generalization bounds

    The Sample Complexity of Dictionary Learning

    Full text link
    A large set of signals can sometimes be described sparsely using a dictionary, that is, every element can be represented as a linear combination of few elements from the dictionary. Algorithms for various signal processing applications, including classification, denoising and signal separation, learn a dictionary from a set of signals to be represented. Can we expect that the representation found by such a dictionary for a previously unseen example from the same source will have L_2 error of the same magnitude as those for the given examples? We assume signals are generated from a fixed distribution, and study this questions from a statistical learning theory perspective. We develop generalization bounds on the quality of the learned dictionary for two types of constraints on the coefficient selection, as measured by the expected L_2 error in representation when the dictionary is used. For the case of l_1 regularized coefficient selection we provide a generalization bound of the order of O(sqrt(np log(m lambda)/m)), where n is the dimension, p is the number of elements in the dictionary, lambda is a bound on the l_1 norm of the coefficient vector and m is the number of samples, which complements existing results. For the case of representing a new signal as a combination of at most k dictionary elements, we provide a bound of the order O(sqrt(np log(m k)/m)) under an assumption on the level of orthogonality of the dictionary (low Babel function). We further show that this assumption holds for most dictionaries in high dimensions in a strong probabilistic sense. Our results further yield fast rates of order 1/m as opposed to 1/sqrt(m) using localized Rademacher complexity. We provide similar results in a general setting using kernels with weak smoothness requirements

    Learning the kernel with hyperkernels

    No full text
    This paper addresses the problem of choosing a kernel suitable for estimation with a support vector machine, hence further automating machine learning. This goal is achieved by defining a reproducing kernel Hilbert space on the space of kernels itself. Such a formulation leads to a statistical estimation problem similar to the problem of minimizing a regularized risk functional. We state the equivalent representer theorem for the choice of kernels and present a semidefinite programming formulation of the resulting optimization problem. Several recipes for constructing hyperkernels are provided, as well as the details of common machine learning problems. Experimental results for classification, regression and novelty detection on UCI data show the feasibility of our approach

    Generalization in Deep Learning

    Full text link
    This paper provides theoretical insights into why and how deep learning can generalize well, despite its large capacity, complexity, possible algorithmic instability, nonrobustness, and sharp minima, responding to an open question in the literature. We also discuss approaches to provide non-vacuous generalization guarantees for deep learning. Based on theoretical observations, we propose new open problems and discuss the limitations of our results.Comment: To appear in Mathematics of Deep Learning, Cambridge University Press. All previous results remain unchange
    corecore