6,513 research outputs found

    Fair Influence Maximization: A Welfare Optimization Approach

    Full text link
    Several behavioral, social, and public health interventions, such as suicide/HIV prevention or community preparedness against natural disasters, leverage social network information to maximize outreach. Algorithmic influence maximization techniques have been proposed to aid with the choice of "peer leaders" or "influencers" in such interventions. Yet, traditional algorithms for influence maximization have not been designed with these interventions in mind. As a result, they may disproportionately exclude minority communities from the benefits of the intervention. This has motivated research on fair influence maximization. Existing techniques come with two major drawbacks. First, they require committing to a single fairness measure. Second, these measures are typically imposed as strict constraints leading to undesirable properties such as wastage of resources. To address these shortcomings, we provide a principled characterization of the properties that a fair influence maximization algorithm should satisfy. In particular, we propose a framework based on social welfare theory, wherein the cardinal utilities derived by each community are aggregated using the isoelastic social welfare functions. Under this framework, the trade-off between fairness and efficiency can be controlled by a single inequality aversion design parameter. We then show under what circumstances our proposed principles can be satisfied by a welfare function. The resulting optimization problem is monotone and submodular and can be solved efficiently with optimality guarantees. Our framework encompasses as special cases leximin and proportional fairness. Extensive experiments on synthetic and real world datasets including a case study on landslide risk management demonstrate the efficacy of the proposed framework.Comment: The short version of this paper appears in the proceedings of AAAI-2

    Fairness Behind a Veil of Ignorance: A Welfare Analysis for Automated Decision Making

    Get PDF
    We draw attention to an important, yet largely overlooked aspect of evaluating fairness for automated decision making systems---namely risk and welfare considerations. Our proposed family of measures corresponds to the long-established formulations of cardinal social welfare in economics, and is justified by the Rawlsian conception of fairness behind a veil of ignorance. The convex formulation of our welfare-based measures of fairness allows us to integrate them as a constraint into any convex loss minimization pipeline. Our empirical analysis reveals interesting trade-offs between our proposal and (a) prediction accuracy, (b) group discrimination, and (c) Dwork et al.'s notion of individual fairness. Furthermore and perhaps most importantly, our work provides both heuristic justification and empirical evidence suggesting that a lower-bound on our measures often leads to bounded inequality in algorithmic outcomes; hence presenting the first computationally feasible mechanism for bounding individual-level inequality.Comment: Conference: Thirty-second Conference on Neural Information Processing Systems (NIPS 2018

    A Moral Framework for Understanding of Fair ML through Economic Models of Equality of Opportunity

    Full text link
    We map the recently proposed notions of algorithmic fairness to economic models of Equality of opportunity (EOP)---an extensively studied ideal of fairness in political philosophy. We formally show that through our conceptual mapping, many existing definition of algorithmic fairness, such as predictive value parity and equality of odds, can be interpreted as special cases of EOP. In this respect, our work serves as a unifying moral framework for understanding existing notions of algorithmic fairness. Most importantly, this framework allows us to explicitly spell out the moral assumptions underlying each notion of fairness, and interpret recent fairness impossibility results in a new light. Last but not least and inspired by luck egalitarian models of EOP, we propose a new family of measures for algorithmic fairness. We illustrate our proposal empirically and show that employing a measure of algorithmic (un)fairness when its underlying moral assumptions are not satisfied, can have devastating consequences for the disadvantaged group's welfare

    Preference-Informed Fairness

    Get PDF
    We study notions of fairness in decision-making systems when individuals have diverse preferences over the possible outcomes of the decisions. Our starting point is the seminal work of Dwork et al. which introduced a notion of individual fairness (IF): given a task-specific similarity metric, every pair of individuals who are similarly qualified according to the metric should receive similar outcomes. We show that when individuals have diverse preferences over outcomes, requiring IF may unintentionally lead to less-preferred outcomes for the very individuals that IF aims to protect. A natural alternative to IF is the classic notion of fair division, envy-freeness (EF): no individual should prefer another individual's outcome over their own. Although EF allows for solutions where all individuals receive a highly-preferred outcome, EF may also be overly-restrictive. For instance, if many individuals agree on the best outcome, then if any individual receives this outcome, they all must receive it, regardless of each individual's underlying qualifications for the outcome. We introduce and study a new notion of preference-informed individual fairness (PIIF) that is a relaxation of both individual fairness and envy-freeness. At a high-level, PIIF requires that outcomes satisfy IF-style constraints, but allows for deviations provided they are in line with individuals' preferences. We show that PIIF can permit outcomes that are more favorable to individuals than any IF solution, while providing considerably more flexibility to the decision-maker than EF. In addition, we show how to efficiently optimize any convex objective over the outcomes subject to PIIF for a rich class of individual preferences. Finally, we demonstrate the broad applicability of the PIIF framework by extending our definitions and algorithms to the multiple-task targeted advertising setting introduced by Dwork and Ilvento

    The Measure and Mismeasure of Fairness: A Critical Review of Fair Machine Learning

    Full text link
    The nascent field of fair machine learning aims to ensure that decisions guided by algorithms are equitable. Over the last several years, three formal definitions of fairness have gained prominence: (1) anti-classification, meaning that protected attributes---like race, gender, and their proxies---are not explicitly used to make decisions; (2) classification parity, meaning that common measures of predictive performance (e.g., false positive and false negative rates) are equal across groups defined by the protected attributes; and (3) calibration, meaning that conditional on risk estimates, outcomes are independent of protected attributes. Here we show that all three of these fairness definitions suffer from significant statistical limitations. Requiring anti-classification or classification parity can, perversely, harm the very groups they were designed to protect; and calibration, though generally desirable, provides little guarantee that decisions are equitable. In contrast to these formal fairness criteria, we argue that it is often preferable to treat similarly risky people similarly, based on the most statistically accurate estimates of risk that one can produce. Such a strategy, while not universally applicable, often aligns well with policy objectives; notably, this strategy will typically violate both anti-classification and classification parity. In practice, it requires significant effort to construct suitable risk estimates. One must carefully define and measure the targets of prediction to avoid retrenching biases in the data. But, importantly, one cannot generally address these difficulties by requiring that algorithms satisfy popular mathematical formalizations of fairness. By highlighting these challenges in the foundation of fair machine learning, we hope to help researchers and practitioners productively advance the area
    • …
    corecore