48 research outputs found

    Budgeted personalized incentive approaches for smoothing congestion in resource networks

    Get PDF
    Abstract. Congestion occurs when there is competition for resources by selfish agents. In this paper, we are concerned with smoothing out congestion in a network of resources by using personalized well-timed incentives that are subject to budget constraints. To that end, we provide: (i) a mathematical formulation that computes equilibrium for the resource sharing congestion game with incentives and budget constraints; (ii) an integrated approach that scales to larger problems by exploiting the factored network structure and approximating the attained equilibrium; (iii) an iterative best response algorithm for solving the unconstrained version (no budget) of the resource sharing congestion game; and (iv) theoretical and empirical results (on an illustrative theme park problem) that demonstrate the usefulness of our approach.

    Lossy Kernelization

    Get PDF
    In this paper we propose a new framework for analyzing the performance of preprocessing algorithms. Our framework builds on the notion of kernelization from parameterized complexity. However, as opposed to the original notion of kernelization, our definitions combine well with approximation algorithms and heuristics. The key new definition is that of a polynomial size α\alpha-approximate kernel. Loosely speaking, a polynomial size α\alpha-approximate kernel is a polynomial time pre-processing algorithm that takes as input an instance (I,k)(I,k) to a parameterized problem, and outputs another instance (I′,k′)(I',k') to the same problem, such that ∣I′∣+k′≤kO(1)|I'|+k' \leq k^{O(1)}. Additionally, for every c≥1c \geq 1, a cc-approximate solution s′s' to the pre-processed instance (I′,k′)(I',k') can be turned in polynomial time into a (c⋅α)(c \cdot \alpha)-approximate solution ss to the original instance (I,k)(I,k). Our main technical contribution are α\alpha-approximate kernels of polynomial size for three problems, namely Connected Vertex Cover, Disjoint Cycle Packing and Disjoint Factors. These problems are known not to admit any polynomial size kernels unless NP⊆coNP/polyNP \subseteq coNP/poly. Our approximate kernels simultaneously beat both the lower bounds on the (normal) kernel size, and the hardness of approximation lower bounds for all three problems. On the negative side we prove that Longest Path parameterized by the length of the path and Set Cover parameterized by the universe size do not admit even an α\alpha-approximate kernel of polynomial size, for any α≥1\alpha \geq 1, unless NP⊆coNP/polyNP \subseteq coNP/poly. In order to prove this lower bound we need to combine in a non-trivial way the techniques used for showing kernelization lower bounds with the methods for showing hardness of approximationComment: 58 pages. Version 2 contain new results: PSAKS for Cycle Packing and approximate kernel lower bounds for Set Cover and Hitting Set parameterized by universe siz

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access two-volume set constitutes the proceedings of the 27th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2021, which was held during March 27 – April 1, 2021, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021. The conference was planned to take place in Luxembourg and changed to an online format due to the COVID-19 pandemic. The total of 41 full papers presented in the proceedings was carefully reviewed and selected from 141 submissions. The volume also contains 7 tool papers; 6 Tool Demo papers, 9 SV-Comp Competition Papers. The papers are organized in topical sections as follows: Part I: Game Theory; SMT Verification; Probabilities; Timed Systems; Neural Networks; Analysis of Network Communication. Part II: Verification Techniques (not SMT); Case Studies; Proof Generation/Validation; Tool Papers; Tool Demo Papers; SV-Comp Tool Competition Papers

    On Approximation of Linear Network Systems

    Get PDF

    Price-based control for electrical power distribution system

    Get PDF

    On Approximation of Linear Network Systems

    Get PDF

    Modelling for Control of Free Molecular Flow Processes

    Get PDF
    corecore