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Optimization Approaches for Solving Chance
Constrained Stochastic Orienteering Problems

Pradeep Varakantham and Akshat Kumar*

School of Information Systems, Singapore Management University
* IBM Research India

Abstract. Orienteering problems (OPs) are typically used to model
routing and trip planning problems. OP is a variant of the well known
traveling salesman problem where the goal is to compute the highest re-
ward path that includes a subset of nodes and has an overall travel time
less than the specified deadline. Stochastic orienteering problems (SOPs)
extend OPs to account for uncertain travel times and are significantly
harder to solve than deterministic OPs. In this paper, we contribute a
scalable mixed integer LP formulation for solving risk aware SOPs, which
is a principled approximation of the underlying stochastic optimization
problem. Empirically, our approach provides significantly better solu-
tion quality than the previous best approach over a range of synthetic
benchmarks and on a real-world theme park trip planning problem.

1 Introduction

Motivated by competitive orienteering sports, Orienteering Problems (OPs) [15]
represent the problem of path selection, where the reward accumulated by visit-
ing a subset of nodes in the path is the maximum for the condition that overall
travel time to traverse the path does not violate the deadline. While OPs have
been used to represent problems like vehicle routing [7] and production schedul-
ing [2], in this work, we are motivated by the problem of tourist trip design
problems similar to the one described in Vansteenwegen et al. [16, 1]. Specifically,
we address the problem of providing risk sensitive route guidance to visitors at
theme parks [10], where the presence of queues at nodes lead to stochastic travel
time between nodes.

As OP assumes deterministic edge lengths, they are insufficient to represent
the route guidance problem at theme parks. Thus, researchers have extended
OPs to stochastic OPs (SOPs), where edge lengths are now random variables
that follow a given distribution. The goal is to find a sequence that maximizes
the sum of utilities from vertices in the sequence [4]. In this paper, we consider
the risk aware SOP [10], where the goal is to compute a path that maximizes
the overall reward while enforcing a risk aware deadline constraint. That is, we
compute paths where the probability of violating the deadline is less than a given
risk parameter, α.

Lau et al. [10] introduced a local search approach for solving such risk aware
SOPs. While such an approach is scalable, it is adhoc and does not provide any



a priori or posteriori guarantees with respect to optimal solution. To address
these limitations, we provide a principled optimization based approach that em-
ploys ideas from the sample average approximation technique to solve stochastic
optimization problems [12].

In order to illustrate the utility of our approach, we provide comparisons
with the local search approach on a synthetic benchmark set introduced in the
literature [4] and also on a real theme park navigation problem, where the travel
times are computed from a year-long data set of travel times at a popular theme
park in Singapore. The results are quite encouraging—our approach provides
significant and consistent increase in solution quality (more than 50% for some
synthetic benchmarks and more than 100% for real-world problems) when com-
pared against the local search approach of [10].

2 Background: OPs and SOPs with Chance Constraints

The orienteering problem (OP) [15] is defined by a tuple 〈V,E, T,R, v1, vn, H〉,
where V and E denote the vertices and edges respectively of the underlying
graph. T : vi × vj → R+ ∪ {0,∞} specifies a finite non-negative travel time
between vertices vi and vj if eij ∈ E and ∞ otherwise; and R : vi → R+ ∪ {0}
specifies a finite non-negative reward for each vertex vi ∈ V . A solution to an
OP is a Hamiltonian path over a subset of vertices including the start vertex v1
and the end vertex vn such that the total travel time is no larger than H. Solving
OPs optimally means finding a solution that maximizes the sum of rewards of
vertices in its path. Researchers have shown that solving OPs optimally is NP-
hard [7]. In this paper, we assume that the end vertex can be any arbitrary
vertex. The start and end vertices in OPs are typically distinct vertices.

Researchers have proposed several exact branch-and-bound methods to solve
OPs [9] including optimizations with cutting plane methods [11, 6]. However,
since OPs are NP-hard, exact algorithms often suffer from scalability issues.
Thus, constant-factor approximation algorithms [3] are necessary for scalabil-
ity. Researchers also proposed a wide variety of heuristics to address this issue
including sampling-based algorithms [15], local search algorithms [7, 5], neural
network-based algorithms [17] and genetic algorithms [14]. More recently, Schilde
et al. developed an ant colony optimization algorithm to solve a bi-objective vari-
ant of OPs [13].

The assumption of deterministic travel times is not a valid one in many
real-world settings and thus researchers have extended OPs to Stochastic OPs
(SOPs) [4], where travel times become random variables that follow a given
distribution. The goal is to find a path that maximizes the sum of expected
utilities from vertices in the path. The random variables are assumed to be
independent of each other.

Existing research has focussed on two different objectives in obtaining solu-
tions for a SOP. The first objective by Campbell et al. [4] is to maximize sum
of expected utilities of visited nodes. The expected utility of a vertex is the dif-
ference between the expected reward and expected penalty of the vertex. The



expected reward (or penalty) of a node is the reward (or penalty) of the vertex
times the probability that the travel time along the path thus far is no larger
(or larger) than H. More formally, the expected utility U(vi) of a vertex vi is

U(vi) = P (ai ≤ H)R(vi)− P (ai > H)C(vi)

where the random variable ai is the arrival time at vertex vi (that is, the travel
time from v1 to vi), R(vi) is the reward of arriving at vertex vi before or at H
and C(vi) is the penalty of arriving at vertex vi after H. Campbell et al. have
extended OP algorithms to solve SOPs including an exact branch-and-bound
method and a local search method based on variable neighborhood search [4].
Gupta et al. introduced a constant-factor approximation algorithm for a special
case of SOPs, where there is no penalty for arriving at a vertex after H [8].

The approach by [4] suffers from many limitations. Firstly, it is a point esti-
mate solution which does not consider the “risk” attitude with respect to violat-
ing the deadline. By “risk”, we refer to probability of completing the path within
the deadline. In other words, a risk-seeking user will be prepared to choose a
sequence of nodes that have a large utility, but with a higher probability of not
completing the path within the deadline, compared to a risk-averse user who
might choose a more “relaxed” path with lower utility. Secondly, the underlying
measurement of expected utility is not intuitive in the sense that a utility value
accrued at each node does not usually depend on the probability that the user
arrives at the node by a certain time; but rather, the utility is accrued when the
node is visited.

Given the above consideration, Lau et al. [10] proposed a second objective
where we maximize accumulated reward while satisfying a chance constraint to
account for the risk of exceeding the horizon. This allows the user to tradeoff risk
against total utility. More precisely, given a value 0 ≤ α ≤ 1, we are interested
in obtaining a path, where the probability of failing to complete the entire path
within a deadline H is less than α. Formally,

prob(an > H) ≤ α (1)

where an is the arrival time at the last vertex of the path.

3 Deterministic Approximation for Chance Constrained
Optimization

In this section, we provide a brief overview of the sample average approximation
(SAA) technique for solving stochastic optimization problems [12]. The stochas-
tic orienteering problem is an instance of the stochastic optimization problem,
where the risk sensitive behavior is often encoded in the form of chance con-
straints. An example of such an optimization problem is given below:

min
x∈X
{g(x) := EP

[
G(x,W )

]
} (2)

s.t. prob
{
F (x,W ) ≤ 0

}
≥ 1− α (3)



where X is the feasible parameter space, W is a random vector with probabil-
ity distribution P and α ∈ (0, 1). The above stochastic optimization problem is
called a chance constrained problem [12]. Notice that the objective function is
an expectation due to the unobserved random variable W . Similarly, the con-
straint function F (·) is also a random variable due to its dependence on W . The
parameter α can be interpreted as the parameter to tune the risk seeking or risk
averse behavior.

It may seem that such an optimization problem is too unwieldy to solve.
Fortunately, a number of techniques do exist that transform such stochastic
optimization problem into a deterministic problem in a principled manner. One
such technique is called sample average approximation [12] or SAA. We describe
a brief outline below; further details can be found in [12]. Interestingly, the SAA
technique can also provide stochastic bounds on the solution quality and thus,
provides a principled approximation.

The main idea behind the SAA is to generate a number of samples for the
random vector W . Let us denote these samples as W i. First, we define the
following indicator-like function that returns 1 if the argument is positive and 0
otherwise.

I(t) =

{
1 if t > 0

0 if t ≤ 0
(4)

We generate N samples for the random variable W . Based on these samples, we
define the approximate probability of constraint violation for a particular point
x as follows:

p̂N (x) =
1

N

N∑
i=1

I
(
F (x,W i)

)
(5)

Now the stochastic optimization is reformulated (approximately) as the following
deterministic optimization problem:

min
x∈X

1

N

N∑
i=1

G(x,W i) (6)

s.t. p̂N (x) ≤ α′ (7)

The parameter α′ plays the role of α in the above optimization problem. Typ-
ically, we set α′ < α to get a feasible solution. Often, the above optimization
problem can be formulated as a mixed-integer program and thus, can be solved
using CPLEX. Based on the number of samples and the parameter α′, several
bounds for the solution quality and feasibility can be derived [12].

4 Solving SOP With Chance Constraints

In this section, we first formulate the SOP problem with chance constraints (see
Section 2) as an optimization problem. We then employ the SAA scheme to get a



max
π

∑
i,j

πijRi (8)

s.t.

πi,j ∈ {0, 1}, ∀vi, vj ∈ V (9)∑
j

πji ≤ 1, ∀vi ∈ V (10)

∑
j

πij ≤ 1, ∀vi ∈ V (11)

∑
j

π1j = 1;
∑
j

πjn = 1 (12)

∑
j

πij −
∑
j

πji =


1 if i = 1;

−1 if i = n;

0 otherwise;

, ∀vi ∈ V (13)

ri ≤ rj − 1 + (1− πij) ∗M ∀vi, vj ∈ V (14)

r1 = 1, rn = n, ri ∈ [1, n] ∀vi ∈ V (15)

Pr
(∑

i,j

πijTij ≥ H
)
≤ α (16)

Table 1: Formulation of chance constrained SOP as a mathematical program.

deterministic approximation. For each directed edge (vi, vj), the binary variable
πij denotes whether the edge (vi, vj) is in the final path. The random variable
Tij denotes the travel time for traversing the directed edge (vi, vj). We assume
that the underlying distribution for each variable Tij is provided as input. The
parameter Ri represents the reward obtained on visiting the node vi.

Table 1 shows the mathematical program for chance constrained SOPs. We
next describe its structure. We designate the start node with id 1 and the desti-
nation node with n. The objective function seeks to maximize the overall reward
obtained based on nodes visited. Constraints (10)-(11) specify that there is a
single incoming and outgoing active edge for each node. Constraint (13) denotes
the flow conservation.

To ensure that there are no cycles in the path, we introduce a new set of vari-
ables ri for each node vi to denote its rank in the final path. For instance, if the
rank of the source node is 1, then any node connected immediately from source
will be ranked greater than 1 and so on. Such monotonically increasing ranking
of nodes will enforce that no cycles are generated. The constraint (14) models
this ranking scheme. The parameter M is a large constant used to maintain the
consistency of the constraint.

Constraint (16) denotes the chance constraint. The total duration of the SOP
is denoted as

∑
i,j πijTij , which is a random variable as each Tij is a random

variable. The parameter H denotes the input deadline. The chance constraint
states that the probability of violating the deadline should be no greater than
α ∈ (0, 1), another input parameter. This constraint is not linear and in general, a



closed form expression is not readily available. We next show how to determinize
this constraint using SAA in the MIP framework.

For each edge of the graph, we generate Q samples for the duration random
variable Tij , denoted by tqij . We represent the function I(·) of Eq. (4) using the
following linear constraints:

zq ≥
∑

ij πijt
q
ij −H

H
∀q ∈ Q (17)

zq ∈ {0, 1} ∀q ∈ Q (18)

where we have introduced auxiliary integer variables zq for each sample q. Using
these auxiliary variables, the constraint (7) is represented as:∑

q z
q

Q
≤ α′ (19)

where α′ is a parameter that is set by the user and is generally smaller
than the parameter α as used in constraint (16). The setting of α′ is critical
and we will provide a detailed discussion about the same in our experimental
results section. To summarize, we get a deterministic mixed-integer program
corresponding to the stochastic program of Table 1 by replacing the stochastic
constraint (16) using Q samples for each random variable corresponding an edge,
introducing auxiliary integer variables zq for each SAA sample and using linear
constraints (17), (18) and (19). The following theoretical results establish the
convergence guarantees for the SAA technique:

Theorem 1 ([12]). Let v? be the optimal solution quality, v̂N be the quality of
the SAA problem, x? be the optimal solution, x̂N be the SAA solution and the
parameter α′ = α, then v̂N → v? and x̂N → x? as N →∞.

The next theorem provides convergence results regarding the feasibility of the
solution w.r.t. the chance constraint.

Theorem 2 ([12]). If x̂N be the feasible solution of the SAA problem and
α′ < α, then the probability that x̂N is a feasible solution of the true problem
approaches one exponentially fast with the increasing number of samples N .

5 Experimental Results

To illustrate the effectiveness of our approach, referred to as MILP-SAA, for
solving the SOP, we provide experimental results on a synthetic benchmark set
employed in the literature [4] and a real world theme park decision support prob-
lem introduced by Lau et al. [10]. We measure the performance of our approach
with respect to the solution quality and the probability of constraint violation
by varying problem parameters. Our results are quite encouraging—the MILP-
SAA approach provides significant increase in solution quality (more than 50%
for some synthetic benchmarks and more than 100% for real-world problems)
when compared against the local search approach of [10], all the while keeping
the probability of constraint violation within the specified limit (=α).



5.1 Synthetic Benchmark Set

Firstly, we provide the comparison on the benchmark set introduced by Lau et
al. [10]. In this set, we vary the following key problem parameters:

• The graph structures are taken from existing work [4] and the number of
nodes (|V |) in these graphs vary in the following range: 〈20, 32, 63〉. The
reward obtained by visiting a node is chosen randomly between 1 and 10.

• The probability of constraint violation or the α parameter of Eq.16 is varied
as: 〈0.3, 0.25, 0.2, 0.15, 0.11〉. Corresponding to each setting of α, we use the
parameter α′ (≤ α, see Eq. (19)) from the values 〈0.2, 0.15, 0.1, 0.05, 0.01〉.

• As in the previous work [10], we employ a gamma distribution, f(x; k, θ), for
modeling the travel time of an edge or the random variable Tij .

f(x; k, θ) =
1

θk
1

Γ (k)
xk−1e

x
θ , x > 0, k, θ > 0

The k parameter is randomly selected for different edges, the theta (θ) pa-
rameter is varied as: 〈1, 2, 3〉.

• Finally, we also test for a range of the deadlines H. For each instance,
we calculate approximately the total time required to visit all the nodes
and then set the deadline H to be the following fraction of the total time:
〈20%, 25%, 30%, 35%〉.
We do not modify the parameters of the local search algorithm provided in

Lau et al. [10], as it was shown to work across a wide variety of problems. With
the MILP-SAA, we compute a 90% optimal solution to ensure easy scalability
to larger problems. Also, to understand the performance of our approach better,
we employ the following settings for the algorithm:

• The number of samples (Q) used by MILP-SAA is varied as: 〈25, 30, 35, 40〉
• The number of sample sets generated for each problem is 15. This corresponds

to the initial random seeds used to sample the travel time from the gamma
distribution.

While we obtained results for all the combination of parameters, we only
show a representative set of results due to space constraints. We show results
where one parameter is modified while keeping other parameters set to their
default value. The default values for different parameters are as:

θ = 1;α = 0.3;α′ = 0.1;H = 25%;Q = 40; (20)

The local search approach always provides a solution with the specified limit α.
For the MILP-SAA, we empirically determine the actual probability of constraint
violation for a particular solution π, say β, by generating 1000 complete samples
for edge duration and computing the fraction of samples for which the solution
violated the deadline H. Ideally, the probability β should be less than α for the
solution to be valid, which is indeed the case for most problem instances for
MILP-SAA.
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Fig. 1: Effect on reward as the horizon budget is varied

Runtime: In this paper, we do not provide detailed results on run-time1 be-
cause both approaches were able to solve all the problems within less than 10
minutes. Local search was able to obtain solutions on the most difficult of prob-
lems within a few seconds. On the other hand, we were able to compute solutions
by using MILP-SAA approach within 10 minutes on the most difficult problem
(63 nodes, H = 20%, Q = 70, α′ = 0.01, θ = 3). When number of samples is
less than or equal to 40, we obtain solutions within 2 minutes. There exist ex-
pected patterns, such as run-time increasing with decreasing horizon budget and
increasing number of samples, however, due to space constraints, we would not
be going through those in this paper.

Horizon Budget: Figure 1 shows the effect of varying horizon on the overall
reward for the three graph configurations. The X-axis shows the horizon as the
percentage of total time required to visit all the nodes. A 20% horizon budget
indicates that on an average, only about 20% of all the nodes can be traversed.
The primary Y -axis (left side) indicates the reward obtained and the secondary
Y -axis (right side) indicates the probability of constraint violation. The bars
indicate the reward obtained by local search and MILP-SAA. In addition, the two
lines represent the probability of constraint violation. The legend ‘Alpha’ denotes
the α parameter and ‘Beta’ denotes the empirically computed probability of
constraint violation for the MILP-SAA solution using 1000 samples. We make
the following observations:

• MILP-SAA outperforms the local search in terms of reward consistently and
significantly for several cases. In addition, this difference in performance is
significant and consistent in the 63 node case. For instance, for the 25%
horizon budget case for 63 nodes in Figure 1(c), the reward difference is close
to 100, indicating about 50% improvement over the local search. This also
implies the traversal of an additional 10 nodes2 in the worst case and 20
nodes in the average case.

1 We conduct our experiments on an Intel Core i5 machine with 1.8 GHz processor
speed and 8 GB RAM.

2 Reward for nodes is drawn from a uniform distribution with minimum value of 1
and maximum value of 10.
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Fig. 2: Effect on reward as the number of samples is varied

• In most of the cases, the variance in performance of local search is much
higher than the variance of MILP-SAA. This is an important observation,
especially for the few cases where local search dominates MILP-SAA. Thus,
MILP-SAA was highly consistent in providing good solution quality.

• As the horizon budget is increased, the problem becomes less constrained
and the difference in the reward values between the two approaches reduces.
This is as expected.

• As the horizon budget is decreased, the problem is more constrained and
hence the actual probability of constraint violation (β) increases. Specifically,
20% horizon budget is a difficult problem to solve for the 32 and 63 node
problems when MILP-SAA employs 40 samples only. This is reflected in the
β values, which are greater than the α = 0.3 threshold. As we show later
in this section, this can be addressed by increasing the number of samples
(> 40) or reducing the α′ value employed (< 0.1).

Number of Samples: We now show the effect of increasing the number of SAA
samples on reward in Figure 2, while setting all the other parameters to their
default value as in Eq. (20). We make the following key observations:

• As the number of SAA samples is increased, the β value reduces. This is as
expected as with the increasing number of samples, the SAA approximation
becomes tighter.

• There is only a minor reduction in reward values obtained by MILP-SAA
with the increasing number of samples. This shows that MILP-SAA can find
a good solution that minimizes the probability of constraint violation even
with increased problem complexity with the higher number of samples.

• Figure 2(d) shows the effect of increasing the number of samples for 20%
horizon budget setting. We see that with 60 SAA samples, the probability
of constraint violation β is smaller than α. Thus, increasing the number of
samples can provide a feasible solution.

Alpha′ and Theta: Figures 3 and 4 indicate the impact of changing α′ and
the θ parameter of the gamma distribution on the performance of MILP-SAA in
comparison to local search. The remaining parameters are fixed to their default
setting (20).
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Fig. 3: Effect on reward as α′ is varied
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(b) |V | = 32
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Fig. 4: Effect on reward as θ is varied

• As expected, with the increase in α′, the empirical probability of constraint
violation, β, increases. However, the increase in accumulated reward is mini-
mal for increased α′ values. This shows that a smaller value of α′ is preferable
to limit the probability of constraint violation.

• For a fixed budget percentage, as we increase the θ parameter of the gamma
distribution, local search on average performs slightly better (albeit with
higher standard deviation) than MILP-SAA in smaller problems (20 and
32 nodes). However, on the 63 node problems, we see that MILP-SAA is
significantly better over all the values of θ.

5.2 Real World Theme Park Problem

Lau et al. [10] introduced the route guidance problem for experience management
at theme parks. Based on a year long data set of wait times at attractions in
the theme park, they constructed best fit gamma distributions for travel times
between attractions. In their work, the problem was formulated as a dynamic
SOP and hence, there was a different travel time distribution for different time
interval of the day. In contrast, we model the problem as a SOP and based on the
same data set, we compute best fit gamma distributions for travel times between
nodes over the entire time horizon. Extending our approach for dynamic SOPs
remains an important area for future work.
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Fig. 5: Solution quality comparisons on real-world theme park SOP

Figure 5 provides the results on the real world data set when horizon budget,
number of samples and α′ parameters are varied. Due to space constraints, we
are unable to show the results where only one parameter is varied in each set
of graphs. In fact, we show results with different values of α (0.1,0.15, 0.2) to
indicate that, unlike in the synthetic data set, we do not get cases where β
exceeds α.

• MILP-SAA consistently obtains higher average reward solutions in compar-
ison to local search. In some cases, the reward improvement in using MILP-
SAA was more than 100%. For instance, if we consider the case with 20%
horizon budget in Figure 5 (a), the actual reward improvement is more than
125 and the simulated probability of constraint violation, β, is well below
the α. Similarly, in Figure 5(c), we obtain more than 100% improvement in
solution quality over the local search approach, all the while keeping the β
within the limit.

• In most cases, the standard deviation in the solutions obtained with local
search is significantly higher in comparison with MILP-SAA.

• Even with 25 samples, we obtain sufficiently stable solutions where the em-
pirical probability of failure, β, is less than the α.

• As the parameter α′ employed by MILP-SAA approach is increased in Fig-
ure 5(c), as expected, the overall reward accumulated and probability of
constraint violation increases.

To summarize, using extensive experiments, we analyzed a number of im-
portant properties of the MILP-SAA approach, such as the number of samples
required and the effect of parameter α′ on the feasibility and quality of the so-
lution. Our approach provided significantly better results than the local search
technique for both synthetic and real-world benchmarks.

6 Summary

In this paper, we have presented a new optimization based approach for solving
risk aware Stochastic Orienteering Problems, where chance constraints represent
risk attitude towards violating the given deadline. By approximating chance



constraints with deterministic linear constraints, we provide a scalable approach
that provides confidence based guarantees on solution quality. In addition, we
show that our approach provides significantly superior strategies in comparison
to an existing local search approach over a wide range of real world and synthetic
problems.
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