45,575 research outputs found

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Non-linear carbon dioxide determination using infrared gas sensors and neural networks with Bayesian regularization

    Get PDF
    Carbon dioxide gas concentration determination using infrared gas sensors combined with Bayesian regularizing neural networks is presented in this work. Infrared sensor with a measuring range of 0~5% was used to measure carbon dioxide gas concentration within the range 0~15000 ppm. Neural networks were employed to fulfill the nonlinear output of the sensor. The Bayesian strategy was used to regularize the training of the back propagation neural network with a Levenberg-Marquardt (LM) algorithm. By Bayesian regularization (BR), the design of the network was adaptively achieved according to the complexity of the application. Levenberg-Marquardt algorithm under Bayesian regularization has better generalization capability, and is more stable than the classical method. The results showed that the Bayesian regulating neural network was a powerful tool for dealing with the infrared gas sensor which has a large non-linear measuring range and provide precise determination of carbon dioxide gas concentration. In this example, the optimal architecture of the network was one neuron in the input and output layer and two neurons in the hidden layer. The network model gave a relationship coefficient of 0.9996 between targets and outputs. The prediction recoveries were within 99.9~100.0%

    Unsupervised Domain Adaptation for Multispectral Pedestrian Detection

    Get PDF
    Multimodal information (e.g., visible and thermal) can generate robust pedestrian detections to facilitate around-the-clock computer vision applications, such as autonomous driving and video surveillance. However, it still remains a crucial challenge to train a reliable detector working well in different multispectral pedestrian datasets without manual annotations. In this paper, we propose a novel unsupervised domain adaptation framework for multispectral pedestrian detection, by iteratively generating pseudo annotations and updating the parameters of our designed multispectral pedestrian detector on target domain. Pseudo annotations are generated using the detector trained on source domain, and then updated by fixing the parameters of detector and minimizing the cross entropy loss without back-propagation. Training labels are generated using the pseudo annotations by considering the characteristics of similarity and complementarity between well-aligned visible and infrared image pairs. The parameters of detector are updated using the generated labels by minimizing our defined multi-detection loss function with back-propagation. The optimal parameters of detector can be obtained after iteratively updating the pseudo annotations and parameters. Experimental results show that our proposed unsupervised multimodal domain adaptation method achieves significantly higher detection performance than the approach without domain adaptation, and is competitive with the supervised multispectral pedestrian detectors

    Automatic Image Registration in Infrared-Visible Videos using Polygon Vertices

    Full text link
    In this paper, an automatic method is proposed to perform image registration in visible and infrared pair of video sequences for multiple targets. In multimodal image analysis like image fusion systems, color and IR sensors are placed close to each other and capture a same scene simultaneously, but the videos are not properly aligned by default because of different fields of view, image capturing information, working principle and other camera specifications. Because the scenes are usually not planar, alignment needs to be performed continuously by extracting relevant common information. In this paper, we approximate the shape of the targets by polygons and use affine transformation for aligning the two video sequences. After background subtraction, keypoints on the contour of the foreground blobs are detected using DCE (Discrete Curve Evolution)technique. These keypoints are then described by the local shape at each point of the obtained polygon. The keypoints are matched based on the convexity of polygon's vertices and Euclidean distance between them. Only good matches for each local shape polygon in a frame, are kept. To achieve a global affine transformation that maximises the overlapping of infrared and visible foreground pixels, the matched keypoints of each local shape polygon are stored temporally in a buffer for a few number of frames. The matrix is evaluated at each frame using the temporal buffer and the best matrix is selected, based on an overlapping ratio criterion. Our experimental results demonstrate that this method can provide highly accurate registered images and that we outperform a previous related method

    POL-LWIR Vehicle Detection: Convolutional Neural Networks Meet Polarised Infrared Sensors

    Get PDF
    For vehicle autonomy, driver assistance and situational awareness, it is necessary to operate at day and night, and in all weather conditions. In particular, long wave infrared (LWIR) sensors that receive predominantly emitted radiation have the capability to operate at night as well as during the day. In this work, we employ a polarised LWIR (POL-LWIR) camera to acquire data from a mobile vehicle, to compare and contrast four different convolutional neural network (CNN) configurations to detect other vehicles in video sequences. We evaluate two distinct and promising approaches, two-stage detection (Faster-RCNN) and one-stage detection (SSD), in four different configurations. We also employ two different image decompositions: the first based on the polarisation ellipse and the second on the Stokes parameters themselves. To evaluate our approach, the experimental trials were quantified by mean average precision (mAP) and processing time, showing a clear trade-off between the two factors. For example, the best mAP result of 80.94% was achieved using Faster-RCNN, but at a frame rate of 6.4 fps. In contrast, MobileNet SSD achieved only 64.51% mAP, but at 53.4 fps.Comment: Computer Vision and Pattern Recognition Workshop 201
    corecore