2,707 research outputs found

    Algorithmic Verification of Continuous and Hybrid Systems

    Get PDF
    We provide a tutorial introduction to reachability computation, a class of computational techniques that exports verification technology toward continuous and hybrid systems. For open under-determined systems, this technique can sometimes replace an infinite number of simulations.Comment: In Proceedings INFINITY 2013, arXiv:1402.661

    Convex Hull Realizations of the Multiplihedra

    Get PDF
    We present a simple algorithm for determining the extremal points in Euclidean space whose convex hull is the nth polytope in the sequence known as the multiplihedra. This answers the open question of whether the multiplihedra could be realized as convex polytopes. We use this realization to unite the approach to A_n-maps of Iwase and Mimura to that of Boardman and Vogt. We include a review of the appearance of the nth multiplihedron for various n in the studies of higher homotopy commutativity, (weak) n-categories, A_infinity-categories, deformation theory, and moduli spaces. We also include suggestions for the use of our realizations in some of these areas as well as in related studies, including enriched category theory and the graph associahedra.Comment: typos fixed, introduction revise

    A discrete methodology for controlling the sign of curvature and torsion for NURBS

    Get PDF
    This paper develops a discrete methodology for approximating the so-called convex domain of a NURBS curve, namely the domain in the ambient space, where a user-specified control point is free to move so that the curvature and torsion retains its sign along the NURBS parametric domain of definition. The methodology provides a monotonic sequence of convex polyhedra, converging from the interior to the convex domain. If the latter is non-empty, a simple algorithm is proposed, that yields a sequence of polytopes converging uniformly to the restriction of the convex domain to any user-specified bounding box. The algorithm is illustrated for a pair of planar and a spatial Bézier configuration

    Shrinkage and Variable Selection by Polytopes

    Get PDF
    Constrained estimators that enforce variable selection and grouping of highly correlated data have been shown to be successful in finding sparse representations and obtaining good performance in prediction. We consider polytopes as a general class of compact and convex constraint regions. Well established procedures like LASSO (Tibshirani, 1996) or OSCAR (Bondell and Reich, 2008) are shown to be based on specific subclasses of polytopes. The general framework of polytopes can be used to investigate the geometric structure that underlies these procedures. Moreover, we propose a specifically designed class of polytopes that enforces variable selection and grouping. Simulation studies and an application illustrate the usefulness of the proposed method
    corecore