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Abstract This paper develops a discrete methodology for approximating the
so-called convex domain of a NURBS curve, namely the domain in the ambient space,
where a user-specified control point is free to move so that the curvature and torsion
retains its sign along the NURBS parametric domain of definition. The methodology
provides a monotonic sequence of convex polyhedra, converging from the interior to
the convex domain. If the latter is non-empty, a simple algorithm is proposed, that
yields a sequence of polytopes converging uniformly to the restriction of the convex
domain to any user-specified bounding box. The algorithm is illustrated for a pair of
planar and a spatial Bézier configuration.

Keywords Curves · Curvature · Torsion · NURBS · Knot insertion

Mathematics Subject Classification (2000) 65D15 · 68U07

1 Introduction

Differential geometry invariants under reparameterization, such as the curvature and
torsion of curves, constitute important features in the creation, analysis and modi-
fication of shape. In order to secure robustness and achieve a satisfactory level of
efficiency when handling such shape features, the user should possess an accurate and
easily computable quantification of their dependence with respect to the degrees of
freedom provided by the adopted geometry representation.
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118 A. I. Ginnis et al.

This paper focuses on the sign of curvature and torsion of planar and spatial NURBS,
respectively. More specifically, our aim is to quantify the dependence of the sign of
these invariants with respect to the control points, appearing in the NURBS represen-
tation. This quantification should provide accurately described feasibility domains in
the ambient space, where the chosen control points are free to move without altering
the sign of the invariant over a subinterval of the NURBS parametric domain of defi-
nition. A CAD system may exploit this knowledge to improve its services both on the
interactive and automatic level. Interactivity can be enhanced in two ways:

– If the designer aims to retain the sign of the invariant, the system constrains the
control point movement in the interior of the feasibility domain.

– If the designer seeks to change the sign of the invariant, the system provides the
shortest path direction for minimizing shape variation.

On the other hand, improvement on the automatic level may include the function-
ality of finding the optimal, against a fairness criterion, location of the control points
in the feasibility domain.

The herein adopted approach for constructing the feasibility domain for a user-spec-
ified control point is to combine NURBS basis properties (Sect. 3) with preliminary
results (Sect. 2) from a generic methodology developed by the authors, that addresses
the problem of controlling the sign of curvature [5], and torsion [6], for the class of
parametric curves that adopt the control point paradigm. Eventually, we get a method-
ology that provides a monotonic sequence of convex polyhedra, converging from the
interior to the feasibility domain; see Theorem 1. Being convex, the feasibility domain
will be henceforth referred to as the convex domain. In the case it is non empty, the
methodology of Sect. 3 yields a simple algorithm presented and illustrated in Sect. 4
for a pair of planar and a spatial Bézier configuration.

2 Generic problem and preliminary results

Suppose that a family of parametric curves is given by

F(d; t) = d · N (t)+ s(t), (1)

which maps d ∈ E
n, n = 2, 3, to a curve with t ranging in a compact interval I ⊂ R

and N : I −→ R, s : I −→ R
n being two sufficiently differentiable functions. The

problem to be investigated is which members of F(d; t) are regular curves of constant
sign of curvature for n = 2 or torsion for n = 3. Curve families as in (1) can naturally
stem from curves whose parametric representation adopts the control point paradigm
with all control points kept fixed but one, say d, that will be referred to as the free
control point. Let us start with

Definition 1 Let be given a family of parametric curves F(d; t), t∈I, d∈En, n = 2, 3
and a fixed t0 ∈ I .

1. For n = 2, the domain of positive curvature Dκ+(t0) of F(d; t) with respect to t0
consists of all possible locations of d for which F(d; t0) is an ordinary point of
positive curvature.
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Discrete methodology for NURBS curve 119

2. For n = 3, the domain of positive torsion Dτ+(t0) of F(d; t) with respect to t0,
consists of all possible locations of d for which F(d; t0) is an ordinary point of
non-zero curvature and positive torsion.

The domains Dκ−(t0) and Dτ−(t0) can be analogously defined.

To deal with the curvature-sign of planar curves we first set d = (x, y), F = (F1, F2),

s = (s1, s2), and recall that the sign of curvature at a regular point of a planar curve
coincides with the sign of the quantity

ht (x, y) = Ḟ1 F̈2 − F̈1 Ḟ2, (2)

where dot signifies differentiation with respect to t . Setting

a1(t) =
∣
∣
∣
∣

Ṅ (t) N̈ (t)
ṡ2(t) s̈2(t)

∣
∣
∣
∣
, a2(t) =

∣
∣
∣
∣

ṡ1(t) s̈1(t)
Ṅ (t) N̈ (t)

∣
∣
∣
∣
, b(t) =

∣
∣
∣
∣

ṡ1(t) s̈1(t)
ṡ2(t) s̈2(t)

∣
∣
∣
∣
, (3)

(2) can be written as

ht (x, y) = a1(t)x+ a2(t)y + b(t). (4)

To do the analogous job for the torsion sign of spatial curves we set d = (x, y, z),
F = (F1, F2, F3) and s = (s1, s2, s3). Then, the sign of torsion at a regular and
non-zero curvature point coincides with the sign of the quantity

Ht (x, y, z) := [Ḟ, F̈,
...
F], (5)

where [a, b, c] denotes the standard triple scalar product of vectors a, b and c. Setting

a1(t) :=
∣
∣
∣
∣
∣
∣

Ṅ N̈
...
N

ṡ2 s̈2
...
s2

ṡ3 s̈3
...
s3

∣
∣
∣
∣
∣
∣

, a2(t) :=
∣
∣
∣
∣
∣
∣

ṡ1 s̈1
...
s1

Ṅ N̈
...
N

ṡ3 s̈3
...
s3

∣
∣
∣
∣
∣
∣

, a3(t) :=
∣
∣
∣
∣
∣
∣

ṡ1 s̈1
...
s1

ṡ2 s̈2
...
s2

Ṅ N̈
...
N

∣
∣
∣
∣
∣
∣

, b(t) :=
∣
∣
∣
∣
∣
∣

ṡ1 s̈1
...
s1

ṡ2 s̈2
...
s2

ṡ3 s̈3
...
s3

∣
∣
∣
∣
∣
∣

,

(6)

(5) can be written as

Ht (x, y, z) = a1(t)x+ a2(t)y + a3(t)z + b(t). (7)

The following preliminary results establish that Dκ+(t0) and Dτ+(t0) are, in general,
half-planes/-spaces, respectively.

Proposition 1

1. Let n = 2 and ai (t), i = 1, 2, be defined as in (3). If cκ = (a1(t0), a2(t0)) �= 0,
then the domains of positive, Dκ+(t0), and negative, Dκ−(t0), curvature with
respect to t0 are the two open half-planes bounded by the line ht0(x, y) = 0; for
a detailed proof see [5].
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120 A. I. Ginnis et al.

2. Let n = 3 and ai (t), i = 1, 2, 3, be defined as in (6). If cτ = (a1(t0), a2(t0),
a3(t0)) �= 0, then the domains of positive, Dτ+(t0), and negative, Dτ−(t0), tor-
sion with respect to t0 are the two open half-spaces bounded by the half-plane
Ht0(x, y, z) = 0; for a detailed proof see [6].

In view of the non-vanishing hypothesis on the quantities cκ and cτ , appearing in the
above proposition, it is natural to inquire what is happening when this condition is not
met. This issue is clarified in the below proposition.

Proposition 2 Let • = κ/τ± and cκ/τ = 0. Then:
(i) If Ṅ (t0) �= 0, then D•(t0) is empty or contains exactly one point.

(ii) If Ṅ (t0) = 0 and ṡ(t0) �= 0, then D•(t0) is either empty or coincides with the
ambient space E

n, n = 2, 3.
(iii) If Ṅ (t0) = 0 and ṡ(t0) = 0 then, to reach a conclusion about D•(t0), one needs

to identify the first non-vanishing higher-order derivatives of these quantities.

Proof Without loss of generality we shall treat only the planar case.

(i) Since ai (t0) = 0, i = 1, 2, and Ṅ (t0) �= 0, the first two of formulae (3) lead to

s̈i (t0) = ṡi (t0)
N̈ (t0)

Ṅ (t0)
, i = 1, 2, (8)

i.e., ṡi (t0) and s̈i (t0) are linearly dependent which, in view of the third formula
in (3), gives that b(t0) and thus ht0(x, y) (see Eq. 2) vanishes at any location
d = (x, y) in E

2. This would imply that the curvature κ(t0) vanishes as well,
provided that the curve F(d; t) is regular at t = t0. Using (1) it is easy to show
that this is indeed the case for all

d �=d� = − ṡ(t0)

Ṅ (t0)
. (9)

Summarizing, curvature κ(t0) vanishes for d �=d� and, as a consequence, all d �=d�

cannot belong to Dκ±(t0). Now, if d = d� then F(d�; t) is not anymore regular
at t = t0 (Ḟ(d�; t0) = 0) and one cannot deduce general conditions guaran-
teeing that κ(t0) is definable. If κ(t0) can be eventually defined, by identifying
the first non-vanishing higher derivatives of ht (d�) and Ḟ(d�; t) as t→t0, and
possesses the desired sign, then Dκ±(t0) will contain only one element, namely
d�. Otherwise, Dκ±(t0) will be empty.

(ii) In this case F(d; t0) is regular for every d∈E2 and thus the sign of κ(t0) is equal
to that of b(t0). If b(t0) has the desired sign then Dκ±(t0) coincides with E

2,

otherwise it is the empty set.
(iii) In this case F(d; t0) is non-regular while ht0(x, y) vanishes for all d∈E2. Con-

sequently, one cannot deduce general conditions that guarantee definability of
κ(t0). ��

Henceforth, and without loss of generality, we shall deal with the problem of main-
taining positive curvature or torsion not at a single parametric point, t0, but over the
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Discrete methodology for NURBS curve 121

whole interval I . Extending Definition 1 we denote by D•(I ), • = κ/τ, the domain
of positive curvature or torsion of a family of curves F(d; t), t ∈ I, i.e., the set of all
possible locations of d for which F(d; t), defined as in (1), has positive curvature or
torsion over I . Noting that

D•(I ) = ∩
t∈I

D•(t) = K ∩ L , K = ∩
t∈I

c• �=0

D•(t), L = ∩
t∈I

c•=0

D•(t), (10)

Proposition 1 implies that the sets

Kκ =
{

(x, y) ∈ E
2 : ht (x, y) = a1(t)x+ a2(t)y + b(t) > 0, t ∈ I, cκ �= 0

}

(11)

and

Kτ =
{

(x, y, z) ∈ E
3 :Ht (x, y, z)=a1(t)x+a2(t)y+a3(t)z+b(t)>0, t ∈ I, cτ �=0

}

(12)

are convex, being the intersection of a one-parameter family of open half-planes/-
spaces, respectively. The sets Kκ , Kτ will be collectively referred to as the convex
domains. In order to get a complete representation of D•(I ), papers [5] and [6] focused
on developing methodologies for expressing the convex domains as finite intersections
of not necessarily linear but easily computable convex sets.

As for L , viewing Proposition 2 in the context of the most popular versions of the
control-point paradigm, it is easy to see that L can be expressed as the intersection
of finite, possibly degenerate (∅ or E

n, n = 2, 3,) sets, and in this connection its
computation is left to be done on a case-by-case basis.

3 Polyhedral approximation of the convex domain via knot insertion

As pointed out in the introduction, this work aims to develop a discrete method for
approximating the convex domains K•, • = κ/τ , when the curve family F(d; t) is,
with respect to t∈I, a NURBS curve. Without loss of generality the proposed approach
will be presented in detail for the planar case, namely approximating Kκ . Neverthe-
less, its generalization for the spatial domain Kτ is natural and will be numerically
illustrated, along with Kκ , in Sect. 3 as well.

In the planar case, the functions ai (t), i = 1, 2, and b(t), appearing in the righthand
side of (4), will be NURBS functions, as a result of the fact that they are expressed
as products of the NURBS functions Ṅ (t), N̈ (t), ṡi (t) and s̈i (t), i = 1, 2; see (3). To
find the NURBS representation of a product of NURBS, one may appeal to a direct
algorithmic approach, proposed in [8] and adopted herein, which supports symbolic
computation of the coefficients of the product after finding the knot vector of the
product. Alternatively, in case the previous approach is computationally expensive
and complex to implement, one might choose to exploit the B−spline representation
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122 A. I. Ginnis et al.

uniqueness property and compute the coefficients of the product by solving an equiv-
alent interpolation problem; see [1].

In the NURBS setting introduced above, the inequality in the definition (11) of Kκ

can be written as

p
∑

j=0

(a1 jx+ a2 jy + b j )N jq(t) > 0, t∈I, (13)

where {N jq(t)}pj=0 is the common NURBS basis of order q and knot vector T =
{t0, . . . , tp+q}, with respect to which the NURBS functions ai (t), i = 1, 2, and b(t)
are being expressed. Exploiting the non-negativity of N jq(t), one can get from (13)
the following finite set of discrete inequalities

a1 jx+ a2 jy + b j > 0, j = 0, . . . , p. (14)

The above inequality set provides a sufficient condition for fulfilling (13). In geomet-
ric terms, (14) determines a polygonal subset, say Kκ,discr , of the sought-for convex
domain Kκ . Kκ,discr is a convex polygon obtained by intersecting the p+1 half-planes
in (14). Then, the usefulness of working with (14) instead of (13) depends on whether
Kκ,discr is close enough to Kκ , in other words, how far from being necessary is the
inequality set (14). Towards this aim, we shall exploit the well known property of
NURBS that the corners of their control polygon converge quadratically to the curve
as knot spacing goes to zero. So, after applying repeatedly simultaneous knot insertion
in ai (t), i = 1, 2, and b(t), (13) takes the following form

p�∑

j=0

(

a(�)
1 j x+ a(�)

2 j y + b(�)
j

)

N (�)
jq (t) > 0, t∈I, p� = p + λ2�−1, � = 1, 2, . . . ,

(15)

where λ denotes the number of non-degenerate subintervals occurring in the original
knot vector T , while {N (�)

jq (t)} is the basis obtained from the (� − 1)-level basis,

{N (�−1)
jq (t)}, by knot insertion at the midpoints of the non-degenerate knot subinter-

vals of its knot vector T (l−1); obviously: N (0)
jq (t) := N jq(t) and T (0) := T . In direct

analogy with the pair (13) and (14), inequality (15) gives the following set of discrete
inequalities

a(�)
1 j x+ a(�)

2 j y + b(�)
j > 0, j = 0, . . . , p�. (16)

Let K (�)
κ,discr be the convex polygon defined by (16). We now state and prove the

following result, establishing the convergence of K (�)
κ,discr towards Kκ as � increases.

Theorem 1 ∀(x0, y0)∈Kκ , ∃�0: (x0, y0)∈K (�)
κ,discr for �≥�0.
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Discrete methodology for NURBS curve 123

Fig. 1 A cubic planar Bézier curve with the free control point d depicted by a circled bullet. A part of the
unbounded convex domain Kκ is depicted in gray. Part ω of ∂Kκ , emanating from the control point nr.4
and tending to infinity, is non-linear

Proof Since (x0, y0)
T∈Kκ , the function

ht (x0, y0) = a1(t)x0 + a2(t)y0 + b(t), t∈I,

is a positive NURBS function for t∈I. Then, appealing to the convergence property
of the knot insertion process, we can say that there will be an index �0 such that, for
all �≥�0, the vertices v(�)

j , j = 0, . . . , p�, of the control polygon of ht (x0, y0), and
thus the control polygon itself, will entirely lie in the positive half-plane. Recalling
that

v(�)
j (x0, y0) =

(

g(�)
j , a(�)

1 j x0 + a(�)
2 j y0 + b(�)

j

)

, j = 0, . . . , p�, (17)

with g
(�)
j denoting the Greville abscissae (see § 8.6 in [2]), we conclude that a(�)

1 j x0+
a(�)

2 j y0 + b(�)
j will be positive for �≥�0, i.e., (x0, y0) will lie in K (�)

κ,discr for �≥�0. ��

Remark 1 Theorem 1 guarantees the pointwise convergence of K (�)
κ,discr to Kκ for large

�. In order to investigate the question of the uniformity of convergence, we assume that
(x, y) lies in a compact subset Kκ of Kκ . Then, in more quantitative terms, we recall
the below given bound (see Lemma 4.1 in Chapter 4 of [7]), which reveals that, via
repeated simultaneous knot insertion, the control coefficients ci of a spline function
f of order q converge quadratically to the function values at the Greville abscissae:

|ci − f (gi )| ≤ C (ti+q−1 − ti+1)
2‖D2 f ‖. (18)

Here ‖·‖ denotes the max-norm, gi = (ti+1 + · · · + ti+q−1)/(q − 1) are the Greville
abscissae, D2 denotes (one-sided) differentiation (from the right) and, finally, the con-
stant C depends only on q. Applying (18) for the family of positive NURBS functions
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124 A. I. Ginnis et al.

(a) (b)

(d)(c)

Fig. 2 Convex polytopes K (�)
κ,discr (solid line) calculated at iteration level: a � = 0, b � = 1, c � = 2,

d � = 4. Kκ is depicted by dashed line

Fig. 3 A quintic planar Bézier
curve with the free control point
d depicted by a circled bullet.
Kκ is a triangle, part of which is
depicted in gray
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(a) (b)

(d)(c)

Fig. 4 Convex polytopes K (�)
κ,discr (solid line) calculated at iteration level: a � = 1, b � = 2, c � = 4,

d � = 6. Kκ is depicted by dashed line

f (t) = ht (x, y) with (x, y)∈Kκ , it is readily seen that, since ‖ D2 f ‖ can be bounded
by an (x, y)−independent constant, uniform convergence over Kκ can be proved by
employing the argumentation of Theorem 1.

Remark 2 The sequence of the convex polygons K (�)
κ,discr is monotone in the follow-

ing sense: K (�)
κ,discr⊆ K (�+1)

κ,discr . To prove this property, let (x0, y0)∈K (�)
κ,discr , which

implies that the control points v(�)
j (x0, y0) lie in the positive half-plane. Then, since

knot insertion is a corner cutting process, it becomes obvious that v(�+1)
j (x0, y0) will

also lie in the positive half-plane and thus (x0, y0)∈K (�+1)
κ,discr as well.

4 A discrete algorithm for non-empty convex domains

Based on the methodology presented in the previous section, we can readily propose
an algorithm for approximating the convex domain Kκ in the case it is not empty.
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126 A. I. Ginnis et al.

Fig. 5 A quintic spatial Bézier curve with the free control point d depicted by a circled bullet. A part of
the unbounded convex domain Kτ is depicted in gray

(a) (b)

(d)(c)

Fig. 6 Convex polytopes K (�)
τ,discr (solid line) calculated at iteration level: a � = 0, b � = 1, c � = 2,

d � = 4
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Discrete methodology for NURBS curve 127

The algorithm is iterative, providing at each step � a convex polytope K (�)
κ,discr . The so

resulting sequence of polytopes converges uniformly to the restriction of Kκ to any
bounding box B, as guaranteed by Remark 1. Convergence is controlled through the
symmetric difference, also called Nikodym metric, δ(A, B) for convex bodies, which
is expressed as the area of the symmetric difference of A and B [4]. Since, however,
the sequence {K (�)

discr } is monotone (see Remark 2), we have

δ
(

K (�+1)
κ,discr , K (�)

κ,discr

)

= area
(

K (�+1)
κ,discr\K (�)

κ,discr

)

. (19)

The algorithm adopts the relative error implied by (19), namely

rel.error
(

K (�+1)
κ,discr , K (�)

κ,discr

)

= area
(

K (�+1)
κ,discr\K (�)

κ,discr

)

/area
(

K (�)
κ,discr

)

(20)

and terminates, after a finite number of steps, when rel.error gets smaller than a
user-specified tolerance parameter tol. We are now ready to state the algorithm:
Algorithm APPROXIMATECONVEXDOMAIN
Input. An initial NURBS curve, the free control point d, a bounding box B centered
at the initial position of d and a relative-error tolerance tol.

Output. K (��)
κ,discr ← an approximant of Kκ ∩B such that rel.error(K (��)

κ,discr , K (��−1)
κ,discr )≤tol.

1. K (0)
κ,discr ← the convex polytope obtained by intersecting B with the half-plane

family (14).

2. �←�+ 1

3. K (�)
κ,discr ← the convex polytope obtained by intersecting B with the half-plane

family (16).

4. if K (�−1)
κ,discr �=∅ and rel.error(K (�)

κ,discr , K (�−1)
κ,discr )≤tol

5. then ��←�

6. otherwise go to step 2

We end by illustrating a Maple implementation of the above algorithm for a pair of
planar and a spatial Bézier configuration. Our implementation is based on Convex [3],
a Maple package for convex geometry, which uses rational arithmetic and has been
employed for materializing steps 1, 3 and 4 in the above algorithm.

Each test is documented by a set of figures and a table. The graphical output starts
with a figure depicting the initial curve with its control polygon, the free control
point d, distinguished from the remaining ones by a circled bullet, and, finally, the
corresponding convex domain K•, • = κ/τ, colored gray. The ensuing figures depict
K• and K (�)

•,discr , for different iteration levels, their boundaries being marked with
dashed and solid line-type, respectively. The accompanying table provides, again for
different iteration levels, the absolute and relative error, evaluated via (19) and (20),
respectively. The first-column data correspond to the first occurrence for which K (�)

•,discr
is non-empty and, as a consequence, both the absolute and the relative error cannot be
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128 A. I. Ginnis et al.

Table 1 Intermediate values for the cubic planar Bézier curve in Fig. 1

Order l 0 1 2 3 5

Abs.error – 2.8657 0.29590 0.11557 0.63280e-2
Rel.error – 0.34948e-1 0.34866e-2 0.13571e-2 0.74175e-4
# inequalities 4 8 16 32 128
# vertices 5 6 7 9 23
CPI time (s) 0.15e-1 0.15e-1 0.15e-1 0.15e-1 0.46e-1

The axes-aligned bounding box B is centered at d = (0, 0) and has edge length equal to 20 units

Table 2 Intermediate values for the quintic planar Bézier curve in Fig. 3

Order l 1 2 3 5 7

Abs.error – 1406.8 145.33 24.836 1.3061
Rel.error – 7.1681 0.90659e-1 0.13803e-1 0.71275e-3
# inequalities 16 32 64 256 1024
# vertices 6 4 4 3 3
CPU time (s) 0.15e-1 0.15e-1 0.31e-1 0.265 2.839

The axes-aligned bounding box B is chosen so that it contains the entire Kκ

Table 3 Intermediate values for the quintic spatial Bézier curve in Fig. 5

Order l 0 2 3 4 5

Abs.error – 27837.0 3378.8 1029.7 244.36
Rel.error – 0.16838e-1 0.20099e-2 0.61131e-3 0.14498e-3
# inequalities 10 40 80 160 320
# faces 10 17 28 49 92
CPU time (s) 0.15e-1 0.62e-1 0.218 0.889 5.054

The axes-aligned bounding box B is centered at d = (0, 0) and has edge length equal to 200 units

defined. Furthermore, the table supplies the number of inequalities used for defining
the approximating polyhedron K (�)

•,discr , the number of its vertices/faces and, finally,
the cpu time spent for each iteration on a typical laptop with the following processor:
Intel(R) Core(TM)2 Duo CPU T7500 at 2.2 GHz (Figs. 1, 2, 3, 4, 5, 6; Tables 1, 2, 3).
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