503 research outputs found

    Localization in Unstructured Environments: Towards Autonomous Robots in Forests with Delaunay Triangulation

    Full text link
    Autonomous harvesting and transportation is a long-term goal of the forest industry. One of the main challenges is the accurate localization of both vehicles and trees in a forest. Forests are unstructured environments where it is difficult to find a group of significant landmarks for current fast feature-based place recognition algorithms. This paper proposes a novel approach where local observations are matched to a general tree map using the Delaunay triangularization as the representation format. Instead of point cloud based matching methods, we utilize a topology-based method. First, tree trunk positions are registered at a prior run done by a forest harvester. Second, the resulting map is Delaunay triangularized. Third, a local submap of the autonomous robot is registered, triangularized and matched using triangular similarity maximization to estimate the position of the robot. We test our method on a dataset accumulated from a forestry site at Lieksa, Finland. A total length of 2100\,m of harvester path was recorded by an industrial harvester with a 3D laser scanner and a geolocation unit fixed to the frame. Our experiments show a 12\,cm s.t.d. in the location accuracy and with real-time data processing for speeds not exceeding 0.5\,m/s. The accuracy and speed limit is realistic during forest operations

    Query-by-Pointing: Algorithms and Pointing Error Compensation

    Get PDF
    People typically communicate by pointing, talking, sketching, writing, and typing. Pointing can be used to visualize or exchange information about an object when there is no other mutually understood way of communication. Despite its proven expressiveness, however, it has not yet become a frequently used modality to interact with computer systems. With the rapid move towards the adoption of mobile technologies, geographic information systems (GISs) have a particular need for advanced forms of interaction that enable users to query the geographic world directly. To enable pointing-based query system on a handheld device, a number of fundamental technical challenges have to be overcome. For such a system to materialize we need models stored in the device\u27s knowledge base that can be used as surrogate of real world objects. These computations, however, assume that (1) the pointing direction matches with the line-of-sight and (2) the observations about location and direction are precise enough so that a computational model will determine the same object as what the user points at. Both assumptions are not true. This thesis, therefore, develops an efficient error compensation model to reduce the discrepancy between the line-of-sight of the eye and the pointer direction. The model is based on a coordinate system centered at the neck and distances measured from neck to eye, neck to shoulder, shoulder to handheld pointer, and the pointing direction. An experiment was conducted using a gyro-enhanced sensor and three subjects who pointed at marked targets in a given room. It showed that the error compensation algorithm significantly reduces errors in pointing with arms outstretched

    ZCAP Research And Development: Final Report

    Get PDF
    ZCAP is a suite of terrain database correlation tools created by IST. This document is a report on the steps taken to meet the goals of handling a larger set of database formats, accessing the quality of terrain data contained in larger databases, and investigating approaches to improve the usability of the ZCAP correlation. The report details the results of the research and suggestions for future directions in terrain database research

    Multi-scale data storage schemes for spatial information systems

    Get PDF
    This thesis documents a research project that has led to the design and prototype implementation of several data storage schemes suited to the efficient multi-scale representation of integrated spatial data. Spatial information systems will benefit from having data models which allow for data to be viewed and analysed at various levels of detail, while the integration of data from different sources will lead to a more accurate representation of reality. The work has addressed two specific problems. The first concerns the design of an integrated multi-scale data model suited for use within Geographical Information Systems. This has led to the development of two data models, each of which allow for the integration of terrain data and topographic data at multiple levels of detail. The models are based on a combination of adapted versions of three previous data structures, namely, the constrained Delaunay pyramid, the line generalisation tree and the fixed grid. The second specific problem addressed in this thesis has been the development of an integrated multi-scale 3-D geological data model, for use within a Geoscientific Information System. This has resulted in a data storage scheme which enables the integration of terrain data, geological outcrop data and borehole data at various levels of detail. The thesis also presents details of prototype database implementations of each of the new data storage schemes. These implementations have served to demonstrate the feasibility and benefits of an integrated multi-scale approach. The research has also brought to light some areas that will need further research before fully functional systems are produced. The final chapter contains, in addition to conclusions made as a result of the research to date, a summary of some of these areas that require future work

    A new method for aspherical surface fitting with large-volume datasets

    Get PDF
    In the framework of form characterization of aspherical surfaces, European National Metrology Institutes (NMIs) have been developing ultra-high precision machines having the ability to measure aspherical lenses with an uncertainty of few tens of nanometers. The fitting of the acquired aspherical datasets onto their corresponding theoretical model should be achieved at the same level of precision. In this article, three fitting algorithms are investigated: the Limited memory-Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), the Levenberg–Marquardt (LM) and one variant of the Iterative Closest Point (ICP). They are assessed based on their capacities to converge relatively fast to achieve a nanometric level of accuracy, to manage a large volume of data and to be robust to the position of the data with respect to the model. Nev-ertheless, the algorithms are first evaluated on simulated datasets and their performances are studied. The comparison of these algorithms is extended on measured datasets of an aspherical lens. The results validate the newly used method for the fitting of aspherical surfaces and reveal that it is well adapted, faster and less complex than the LM or ICP methods.EMR

    A Self-Contained and Automated Method for Flood Hazard Maps Prediction in Urban Areas

    Get PDF
    Water depths and velocities predicted inside urban areas during severe storms are traditionally the final result of a chain of hydrologic and hydraulic models. The use of a single model embedding all the components of the rainfall–runoff transformation, including the flux concentration in the river network, can reduce the subjectivity and, as a consequence, the final uncertainty of the computed water depths and velocities. In the model construction, a crucial issue is the management of the topographic data. The information given by a Digital Elevation Model (DEM) available on a regular grid, as well as all the other elevation data provided by single points or contour lines, allow the creation of a Triangulated Irregular Network (TIN) based unstructured digital terrain model, which provides the spatial discretization for both the hydraulic and the hydrologic models. The procedure is split into four steps: (1) correction of the elevation z* measured in the nodes of a preliminary network connecting the edges with all the DEM cell centers; (2) the selection of a suitable hydrographic network where at least one edge of each node has a strictly descending elevation, (3) the generation of the computational mesh, whose edges include all the edges of the hydrographic network and also other lines following internal boundaries provided by roads or other infrastructures, and (4) the estimation of the elevation of the nodes of the computational mesh. A suitable rainfall–runoff transformation model is finally applied to each cell of the identified computational mesh. The proposed methodology is applied to the Sovara stream basin, in central Italy, for two flood events—one is used for parameter calibration and the other one for validation purpose. The comparison between the simulated and the observed flooded areas for the validation flood event shows a good reconstruction of the urban flooding

    Biased randomized insertion orders

    Get PDF
    In this thesis, we consider insertion orders for incremental construction in computational geometry. Specifically, we focus on Delaunay triangulations and arrangements of line segments. The starting point of this research was the assumption that by adapting the orders to the point sets, we could speed up the point location in incremental constructions. We present new insertion orders for Delaunay triangulations based on the concepts of adap-tive curves. More specifically, we explore orders that attempt to split the point set evenly in the recursive construction of the order. Further, we explore squarified orders that are orders that try to produce subproblems without any bias to one of the coordinate axes. We pro-vide implementations for all of these orders and several existing ones. We also propose new insertion orders for arrangements of line segments. We perform an experimental evaluation of the orders for incrementally constructing Delau-nay triangulations. Our experiments show the advantages of squarifying: for a tour visiting the points in the given order, the squarified order typically produces a shorter tour than the order it is based on. This results in (slightly) faster point location. The experiments also sho

    An improved local remeshing algorithm for moving boundary problems

    Get PDF
    © 2016 The Author(s). Three issues are tackled in this study to improve the robustness of local remeshing techniques. Firstly, the local remeshing region (hereafter referred to as ‘hole’) is initialized by removing low-quality elements and then continuously expanded until a certain element quality is reached after remeshing. The effect of the number of the expansion cycle on the hole size and element quality after remeshing is experimentally analyzed. Secondly, the grid sources for element size control are attached to moving bodies and will move along with their host bodies to ensure reasonable grid resolution inside the hole. Thirdly, the boundary recovery procedure of a Delaunay grid generation approach is enhanced by a new grid topology transformation technique (namely shell transformation) so that the new grid created inside the hole is therefore free of elements of extremely deformed/skewed shape, whilst also respecting the hole boundary. The proposed local remeshing algorithm has been integrated with an in-house unstructured grid-based simulation system for solving moving boundary problems. The robustness and accuracy of the developed local remeshing technique are successfully demonstrated via industry-scale applications for complex flow simulations
    corecore