1,459 research outputs found

    Fast and accurate evaluation of a generalized incomplete gamma function

    Get PDF
    We present a computational procedure to evaluate the integral ∫xy sp-1 e-μs ds, for 0 ≤ x 0, which generalizes the lower (x=0) and upper (y=+∞) incomplete gamma functions. To allow for large values of x, y, and p while avoiding under/overflow issues in the standard double precision floating point arithmetic, we use an explicit normalization that is much more efficient than the classical ratio with the complete gamma function. The generalized incomplete gamma function is estimated with continued fractions, integrations by parts, or, when x ≈ y, with the Romberg numerical integration algorithm. We show that the accuracy reached by our algorithm improves a recent state-of-the-art method by two orders of magnitude, and is essentially optimal considering the limitations imposed by the floating point arithmetic. Moreover, the admissible parameter range of our algorithm (0 ≤ p,x,y ≤ 1015) is much larger than competing algorithms and its robustness is assessed through massive usage in an image processing application

    Efficient calculation of molecular integrals over London atomic orbitals

    Get PDF
    The use of London atomic orbitals (LAOs) in a non-perturbative manner enables the determination of gauge-origin invariant energies and properties for molecular species in arbitrarily strong magnetic fields. Central to the efficient implementation of such calculations for molecular systems is the evaluation of molecular integrals, particularly the electron repulsion integrals (ERIs). We present an implementation of several different algorithms for the evaluation of ERIs over Gaussian-type LAOs at arbitrary magnetic field strengths. The efficiency of generalized McMurchie-Davidson (MD), Head-Gordon-Pople (HGP) and Rys quadrature schemes is compared. For the Rys quadrature implementation, we avoid the use of high precision arithmetic and interpolation schemes in the computation of the quadrature roots and weights, enabling the application of this algorithm seamlessly to a wide range of magnetic fields. The efficiency of each generalised algorithm is compared by numerical application, classifying the ERIs according to their total angular momenta and evaluating their performance for primitive and contracted basis sets. In common with zero-field integral evaluation, no single algorithm is optimal for all angular momenta thus a simple mixed scheme is put forward, which selects the most efficient approach to calculate the ERIs for each shell quartet. The mixed approach is significantly more efficient than the exclusive use of any individual algorithm

    Neural Connectivity with Hidden Gaussian Graphical State-Model

    Full text link
    The noninvasive procedures for neural connectivity are under questioning. Theoretical models sustain that the electromagnetic field registered at external sensors is elicited by currents at neural space. Nevertheless, what we observe at the sensor space is a superposition of projected fields, from the whole gray-matter. This is the reason for a major pitfall of noninvasive Electrophysiology methods: distorted reconstruction of neural activity and its connectivity or leakage. It has been proven that current methods produce incorrect connectomes. Somewhat related to the incorrect connectivity modelling, they disregard either Systems Theory and Bayesian Information Theory. We introduce a new formalism that attains for it, Hidden Gaussian Graphical State-Model (HIGGS). A neural Gaussian Graphical Model (GGM) hidden by the observation equation of Magneto-encephalographic (MEEG) signals. HIGGS is equivalent to a frequency domain Linear State Space Model (LSSM) but with sparse connectivity prior. The mathematical contribution here is the theory for high-dimensional and frequency-domain HIGGS solvers. We demonstrate that HIGGS can attenuate the leakage effect in the most critical case: the distortion EEG signal due to head volume conduction heterogeneities. Its application in EEG is illustrated with retrieved connectivity patterns from human Steady State Visual Evoked Potentials (SSVEP). We provide for the first time confirmatory evidence for noninvasive procedures of neural connectivity: concurrent EEG and Electrocorticography (ECoG) recordings on monkey. Open source packages are freely available online, to reproduce the results presented in this paper and to analyze external MEEG databases

    High-precision computation of uniform asymptotic expansions for special functions

    Get PDF
    In this dissertation, we investigate new methods to obtain uniform asymptotic expansions for the numerical evaluation of special functions to high-precision. We shall first present the theoretical and computational fundamental aspects required for the development and ultimately implementation of such methods. Applying some of these methods, we obtain efficient new convergent and uniform expansions for numerically evaluating the confluent hypergeometric functions and the Lerch transcendent at high-precision. In addition, we also investigate a new scheme of computation for the generalized exponential integral, obtaining on the fastest and most robust implementations in double-precision floating-point arithmetic. In this work, we aim to combine new developments in asymptotic analysis with fast and effective open-source implementations. These implementations are comparable and often faster than current open-source and commercial stateof-the-art software for the evaluation of special functions.Esta tesis presenta nuevos métodos para obtener expansiones uniformes asintóticas, para la evaluación numérica de funciones especiales en alta precisión. En primer lugar, se introducen fundamentos teóricos y de carácter computacional necesarios para el desarrollado y posterior implementación de tales métodos. Aplicando varios de dichos métodos, se obtienen nuevas expansiones uniformes convergentes para la evaluación numérica de las funciones hipergeométricas confluentes y de la función transcendental de Lerch. Por otro lado, se estudian nuevos esquemas de computo para evaluar la integral exponencial generalizada, desarrollando una de las implementaciones más eficientes y robustas en aritmética de punto flotante de doble precisión. En este trabajo, se combinan nuevos desarrollos en análisis asintótico con implementaciones rigurosas, distribuidas en código abierto. Las implementaciones resultantes son comparables, y en ocasiones superiores, a las soluciones comerciales y de código abierto actuales, que representan el estado de la técnica en el campo de la evaluación de funciones especiales

    High-precision computation of uniform asymptotic expansions for special functions

    Get PDF
    In this dissertation, we investigate new methods to obtain uniform asymptotic expansions for the numerical evaluation of special functions to high-precision. We shall first present the theoretical and computational fundamental aspects required for the development and ultimately implementation of such methods. Applying some of these methods, we obtain efficient new convergent and uniform expansions for numerically evaluating the confluent hypergeometric functions and the Lerch transcendent at high-precision. In addition, we also investigate a new scheme of computation for the generalized exponential integral, obtaining on the fastest and most robust implementations in double-precision floating-point arithmetic. In this work, we aim to combine new developments in asymptotic analysis with fast and effective open-source implementations. These implementations are comparable and often faster than current open-source and commercial stateof-the-art software for the evaluation of special functions.Esta tesis presenta nuevos métodos para obtener expansiones uniformes asintóticas, para la evaluación numérica de funciones especiales en alta precisión. En primer lugar, se introducen fundamentos teóricos y de carácter computacional necesarios para el desarrollado y posterior implementación de tales métodos. Aplicando varios de dichos métodos, se obtienen nuevas expansiones uniformes convergentes para la evaluación numérica de las funciones hipergeométricas confluentes y de la función transcendental de Lerch. Por otro lado, se estudian nuevos esquemas de computo para evaluar la integral exponencial generalizada, desarrollando una de las implementaciones más eficientes y robustas en aritmética de punto flotante de doble precisión. En este trabajo, se combinan nuevos desarrollos en análisis asintótico con implementaciones rigurosas, distribuidas en código abierto. Las implementaciones resultantes son comparables, y en ocasiones superiores, a las soluciones comerciales y de código abierto actuales, que representan el estado de la técnica en el campo de la evaluación de funciones especiales.Postprint (published version

    Non-parametric frailty Cox models for hierarchical time-to-event data.

    Get PDF
    We propose a novel model for hierarchical time-to-event data, for example, healthcare data in which patients are grouped by their healthcare provider. The most common model for this kind of data is the Cox proportional hazard model, with frailties that are common to patients in the same group and given a parametric distribution. We relax the parametric frailty assumption in this class of models by using a non-parametric discrete distribution. This improves the flexibility of the model by allowing very general frailty distributions and enables the data to be clustered into groups of healthcare providers with a similar frailty. A tailored Expectation-Maximization algorithm is proposed for estimating the model parameters, methods of model selection are compared, and the code is assessed in simulation studies. This model is particularly useful for administrative data in which there are a limited number of covariates available to explain the heterogeneity associated with the risk of the event. We apply the model to a clinical administrative database recording times to hospital readmission, and related covariates, for patients previously admitted once to hospital for heart failure, and we explore latent clustering structures among healthcare providers.MR

    Sparse Horseshoe Estimation via Expectation-Maximisation

    Full text link
    The horseshoe prior is known to possess many desirable properties for Bayesian estimation of sparse parameter vectors, yet its density function lacks an analytic form. As such, it is challenging to find a closed-form solution for the posterior mode. Conventional horseshoe estimators use the posterior mean to estimate the parameters, but these estimates are not sparse. We propose a novel expectation-maximisation (EM) procedure for computing the MAP estimates of the parameters in the case of the standard linear model. A particular strength of our approach is that the M-step depends only on the form of the prior and it is independent of the form of the likelihood. We introduce several simple modifications of this EM procedure that allow for straightforward extension to generalised linear models. In experiments performed on simulated and real data, our approach performs comparable, or superior to, state-of-the-art sparse estimation methods in terms of statistical performance and computational cost
    • …
    corecore