530 research outputs found

    FLARE: A Framework for the Finite Element Simulation of Electromagnetic Interference on Buried Metallic Pipelines

    Get PDF
    The functionality of buried metallic pipelines can be compromised by the electrical lines that share the same right-of-way. Given the considerable size of shared corridors, computer simulation is an important tool for performing risk assessment and mitigation design. In this work, we introduce an open-source computational framework for the analysis of electromagnetic interference on large earth-return structures. The developed framework is based on FLARE-an efficient finite element solver developed by the authors in MATLAB((R)). FLARE includes solvers for problems involving static electric and magnetic fields, and DC and time-harmonic AC currents. Quasi-magnetostatic transient problems can be studied through time-marching or-for linear problems-with an efficient inverse-Laplace approach. In this work, we succinctly describe the optimization of time-critical operations in FLARE, as well as the implementation of a transient solver with automatic time-stepping. We validate the numerical results obtained with FLARE via a comparison with the commercial software COMSOL Multiphysics((R)). We then use the validated time-marching analysis results to test the accuracy and efficiency of three numerical inverse-Laplace algorithms. The test problem considered is the assessment of the inductive coupling between a 500 kV transmission line and a metallic pipeline buried in the soil

    Modelling, Simulation and Data Analysis in Acoustical Problems

    Get PDF
    Modelling and simulation in acoustics is currently gaining importance. In fact, with the development and improvement of innovative computational techniques and with the growing need for predictive models, an impressive boost has been observed in several research and application areas, such as noise control, indoor acoustics, and industrial applications. This led us to the proposal of a special issue about “Modelling, Simulation and Data Analysis in Acoustical Problems”, as we believe in the importance of these topics in modern acoustics’ studies. In total, 81 papers were submitted and 33 of them were published, with an acceptance rate of 37.5%. According to the number of papers submitted, it can be affirmed that this is a trending topic in the scientific and academic community and this special issue will try to provide a future reference for the research that will be developed in coming years

    Contribution to the characterization of stratified structures : electromagnetic analysis of a coaxial cell and a microstrip line

    Get PDF
    The objective of this dissertation is the development of electromagnetic modelling software specific to the cells of microwave material characterization. This development is based on numerical methods that are alternative to finite element method which is widely used in commercial software. For the need to extract the properties of materials by inverse modelling methods, research into the numerical efficiency of direct analysis is the focus in this thesis. The characterization targeted cells in this work concern a coaxial cell and a planar line. The presence of an unknown material is modelled by a stratified heterogeneous transmission structure. The application of the transverse operator method (TOM) on the multi-layered coaxial cell allowed the determination of the propagation constant of fundamental mode and its corresponding field distribution of the electromagnetic fields, and the characteristics of higher-order modes for the need of the characterization of discontinuities between empty line and loaded line. In the case of the microstrip line, the use of the modified transverse resonance method (MTRM) allowed the determination of characteristics of the fundamental and higher order modes. Since each cell consists of several different sections, the matrix S of the set will be determined by the use of the several modal methods, such as modal connection method (''mode matching'') and multimodal variational method (MVM). The direct analysis codes are coupled with several optimization programs to constitute the software for extracting the material parameters. These are applied to material samples in cylinder form holed by the coaxial cell, or thin rectangular wafer by the microstrip line. Broadband extraction results were obtained, values are comparable with those published. Both high-loss dielectrics and nanostructured materials have been studied by our method

    Aeronautical engineering: A continuing bibliography with indexes (supplement 271)

    Get PDF
    This bibliography lists 666 reports, articles, and other documents introduced into the NASA scientific and technical information system in October, 1991. Subject coverage includes design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    Research in structural and solid mechanics, 1982

    Get PDF
    Advances in structural and solid mechanics, including solution procedures and the physical investigation of structural responses are discussed

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Aerodynamic Analyses Requiring Advanced Computers, part 2

    Get PDF
    Papers given at the conference present the results of theoretical research on aerodynamic flow problems requiring the use of advanced computers. Topics discussed include two-dimensional configurations, three-dimensional configurations, transonic aircraft, and the space shuttle

    NASA Tech Briefs, December 1989

    Get PDF
    Topics include: Electronic Components and Circuits. Electronic Systems, Physical Sciences, Materials, Computer Programs, Mechanics, Machinery, Fabrication Technology, Mathematics and Information Sciences, and Life Sciences

    Third International Symposium on Magnetic Suspension Technology

    Get PDF
    In order to examine the state of technology of all areas of magnetic suspension and to review recent developments in sensors, controls, superconducting magnet technology, and design/implementation practices, the Third International Symposium on Magnetic Suspension Technology was held at the Holiday Inn Capital Plaza in Tallahassee, Florida on 13-15 Dec. 1995. The symposium included 19 sessions in which a total of 55 papers were presented. The technical sessions covered the areas of bearings, superconductivity, vibration isolation, maglev, controls, space applications, general applications, bearing/actuator design, modeling, precision applications, electromagnetic launch and hypersonic maglev, applications of superconductivity, and sensors
    corecore