17,849 research outputs found

    Moufang sets and structurable division algebras

    Get PDF
    A Moufang set is essentially a doubly transitive permutation group such that each point stabilizer contains a normal subgroup which is regular on the remaining vertices; these regular normal subgroups are called the root groups, and they are assumed to be conjugate and to generate the whole group. It has been known for some time that every Jordan division algebra gives rise to a Moufang set with abelian root groups. We extend this result by showing that every structurable division algebra gives rise to a Moufang set, and conversely, we show that every Moufang set arising from a simple linear algebraic group of relative rank one over an arbitrary field k of characteristic different from 2 and 3 arises from a structurable division algebra. We also obtain explicit formulas for the root groups, the tau-map and the Hua maps of these Moufang sets. This is particularly useful for the Moufang sets arising from exceptional linear algebraic groups

    Singular vectors for the WNW_N algebras

    Get PDF
    In this paper, we use free field realisations of the A-type principal, or Casimir, WNW_N algebras to derive explicit formulae for singular vectors in Fock modules. These singular vectors are constructed by applying screening operators to Fock module highest weight vectors. The action of the screening operators is then explicitly evaluated in terms of Jack symmetric functions and their skew analogues. The resulting formulae depend on sequences of pairs of integers that completely determine the Fock module as well as the Jack symmetric functions.Comment: 18 page

    Deterministic Polynomial Time Algorithms for Matrix Completion Problems

    Get PDF
    We present new deterministic algorithms for several cases of the maximum rank matrix completion problem (for short matrix completion), i.e. the problem of assigning values to the variables in a given symbolic matrix as to maximize the resulting matrix rank. Matrix completion belongs to the fundamental problems in computational complexity with numerous important algorithmic applications, among others, in computing dynamic transitive closures or multicast network codings (Harvey et al SODA 2005, Harvey et al SODA 2006). We design efficient deterministic algorithms for common generalizations of the results of Lovasz and Geelen on this problem by allowing linear functions in the entries of the input matrix such that the submatrices corresponding to each variable have rank one. We present also a deterministic polynomial time algorithm for finding the minimal number of generators of a given module structure given by matrices. We establish further several hardness results related to matrix algebras and modules. As a result we connect the classical problem of polynomial identity testing with checking surjectivity (or injectivity) between two given modules. One of the elements of our algorithm is a construction of a greedy algorithm for finding a maximum rank element in the more general setting of the problem. The proof methods used in this paper could be also of independent interest.Comment: 14 pages, preliminar

    Rings of small rank over a Dedekind domain and their ideals

    Full text link
    In 2001, M. Bhargava stunned the mathematical world by extending Gauss's 200-year-old group law on integral binary quadratic forms, now familiar as the ideal class group of a quadratic ring, to yield group laws on a vast assortment of analogous objects. His method yields parametrizations of rings of degree up to 5 over the integers, as well as aspects of their ideal structure, and can be employed to yield statistical information about such rings and the associated number fields. In this paper, we extend a selection of Bhargava's most striking parametrizations to cases where the base ring is not Z but an arbitrary Dedekind domain R. We find that, once the ideal classes of R are properly included, we readily get bijections parametrizing quadratic, cubic, and quartic rings, as well as an analogue of the 2x2x2 cube law reinterpreting Gauss composition for which Bhargava is famous. We expect that our results will shed light on the analytic distribution of extensions of degree up to 4 of a fixed number field and their ideal structure.Comment: 39 pages, 1 figure. Harvard College senior thesis, edite

    An analogue of the Magnus problem for associative algebras

    Full text link
    We prove an analogue of the Magnus theorem for associative algebras without unity over arbitrary fields. Namely, if an algebra is given by n+k generators and k relations and has an n-element system of generators, then this algebra is a free algebra of rank n
    • …
    corecore