233 research outputs found

    Dynamics and Motion of a Six Degree of Freedom Robot Manipulator

    Get PDF
    In this thesis, a strategy to accomplish pick-and-place operations using a six degree-of-freedom (DOF) robotic arm attached to a wheeled mobile robot is presented. This research work is part of a bigger project in developing a robotic-assisted nursing to be used in medical settings. The significance of this project relies on the increasing demand for elderly and disabled skilled care assistance which nowadays has become insufficient. Strong efforts have been made to incorporate technology to fulfill these needs. Several methods were implemented to make a 6-DOF manipulator capable of performing pick-and-place operations. Some of these methods were used to achieve specific tasks such as: solving the inverse kinematics problem, or planning a collision-free path. Other methods, such as forward kinematics description, workspace evaluation, and dexterity analysis, were used to describe the manipulator and its capabilities. The manipulator was accurately described by obtaining the link transformation matrices from each joint using the Denavit-Hartenberg (DH) notations. An Iterative Inverse Kinematics method (IIK) was used to find multiple configurations for the manipulator along a given path. The IIK method was based on the specific geometric characteristic of the manipulator, in which several joints share a common plane. To find admissible solutions along the path, the workspace of the manipulator was considered. Algebraic formulations to obtain the specific workspace of the 6-DOF manipulator on the Cartesian coordinate space were derived from the singular configurations of the manipulator. Local dexterity analysis was also required to identify possible orientations of the end-effector for specific Cartesian coordinate positions. The closed-form expressions for the range of such orientations were derived by adapting an existing dexterity method. Two methods were implemented to plan the free-collision path needed to move an object from one place to another without colliding with an obstacle. Via-points were added to avoid the robot mobile platform and the zones in which the manipulator presented motion difficulties. Finally, the segments located between initial, final, and via-points positions, were connected using straight lines forming a global path. To form the collision-free path, the straight-line were modified to avoid the obstacles that intersected the path. The effectiveness of the proposed analysis was verified by comparing simulation and experimental results. Three predefined paths were used to evaluate the IIK method. Ten different scenarios with different number and pattern of obstacles were used to verify the efficiency of the entire path planning algorithm. Overall results confirmed the efficiency of the implemented methods for performing pick-and-place operations with a 6-DOF manipulator

    Computer algebra for solving dynamics problems of piezoelectric robots with large number of joints

    Get PDF
    The application of general control theory to complex mechanical systems represents an extremely difficult problem. If industrial piezoelectric robots have large number of joints, development of new control algorithms is unavoidable in order to achieve high positioning accuracy. The efficiency of computer algebra application was compared with the most popular methods of forming the dynamic equations of robots in real time. To this end, a computer algebra system VIBRAN was used. Expressions for the generalized inertia matrix of the robots have been derived by means of the computer algebra technique with the following automatic program code generation. As shown in the paper, such application could drastically reduce the number of floating point product operations that are required for efficient numerical simulation of piezoelectric robots

    Parallel Manipulators

    Get PDF
    In recent years, parallel kinematics mechanisms have attracted a lot of attention from the academic and industrial communities due to potential applications not only as robot manipulators but also as machine tools. Generally, the criteria used to compare the performance of traditional serial robots and parallel robots are the workspace, the ratio between the payload and the robot mass, accuracy, and dynamic behaviour. In addition to the reduced coupling effect between joints, parallel robots bring the benefits of much higher payload-robot mass ratios, superior accuracy and greater stiffness; qualities which lead to better dynamic performance. The main drawback with parallel robots is the relatively small workspace. A great deal of research on parallel robots has been carried out worldwide, and a large number of parallel mechanism systems have been built for various applications, such as remote handling, machine tools, medical robots, simulators, micro-robots, and humanoid robots. This book opens a window to exceptional research and development work on parallel mechanisms contributed by authors from around the world. Through this window the reader can get a good view of current parallel robot research and applications

    Development of a 6 DOF Parallel Serial Hybrid Manipulator

    Get PDF
    This thesis focuses on the development of a new modular 6 DOF hybrid manipulator. A hybrid manipulator consists of the synergistic combination of serial and parallel manipulator architectures. It incorporates the good performance characteristics of a serial manipulator (larger work space and dexterity) and a parallel manipulator (higher rigidity and loading capacity/self-weight ratio). The hybrid manipulator under study includes a 3 DOF symmetric planar manipulator as a base platform over which a 3 DOF serial manipulator was placed with an appropriate endeffector. The objective of the thesis was to fabricate the above-described manipulator and develop control algorithm for manipulation. The research work started with kinematic (forward and inverse) and dynamic analysis of parallel and serial manipulators was carried analytically and computationally in MATLAB. The results of which were required for configuration selection, design optimization, motion analysis and simulation of the hybrid manipulator. From the analysis results, the planar base and serial arm manipulator was fabricated. The prototype developed was controlled in real time through MATLAB-Sim Mechanics Arduino Interface. The inverse kinematics was solved by MATLAB and servo control was established via Arduino. The algorithm developed for manipulation was verified alongside computational simulation and experiment

    Industrial Robotics

    Get PDF
    This book covers a wide range of topics relating to advanced industrial robotics, sensors and automation technologies. Although being highly technical and complex in nature, the papers presented in this book represent some of the latest cutting edge technologies and advancements in industrial robotics technology. This book covers topics such as networking, properties of manipulators, forward and inverse robot arm kinematics, motion path-planning, machine vision and many other practical topics too numerous to list here. The authors and editor of this book wish to inspire people, especially young ones, to get involved with robotic and mechatronic engineering technology and to develop new and exciting practical applications, perhaps using the ideas and concepts presented herein

    Reconfigurable kinematics of General Stewart Platform and simulation interface.

    Get PDF

    Reconfigurable kinematics, dynamics and control process for industrial robots.

    Get PDF

    Localizing a quadrotor with collisions: novel sensor design and applications to particle filtering

    Full text link
    Collisions are typically seen as adverse events for quadrotors, with numerous researchers designing cages for minimizing the effect of impacts on the vehicles. In this thesis, we reverse this paradigm, treating collisions as an additional opportunity for localization. In order to gather collision information, a touch-only sensor with a protective frame is designed to sense the 2-D relative displacement due to inertial force between vehicle and the frame while collision happens. We provide a mathematical model that represents the displacement in terms of the poses of the protective frame and quadrotor is constructed and solved numerically, which helps analyze the distance from obstacles to the vehicle and collision direction. At last, a particle filter based localization observing the collision status is simulated, which verifies the theoretical feasibility utilizing collision information to perform localization in a known environment
    corecore