785 research outputs found

    Algebraic Parameter Estimation of Damped Exponentials

    Get PDF
    International audienceThe parameter estimation of a sum of exponentials or the exponential fitting of data is a well known problem with a rich history. It is a nonlinear problem which presents several difficulties as the ill-conditioning when roots have close values and the order of the estimated parameters, among others. One of the best existing methods is the modified Prony algorithm which suffers in the presence of noise. In this paper we propose an algebraic method for the parameter estimation. The method, differently from the modified Prony method, is considerably robust to noise. The comparison of both through simulations confirm the good performance of the algebraic method

    Algebraic Parameter Estimation of Damped Exponentials

    Get PDF
    International audienceThe parameter estimation of a sum of exponentials or the exponential fitting of data is a well known problem with a rich history. It is a nonlinear problem which presents several difficulties as the ill-conditioning when roots have close values and the order of the estimated parameters, among others. One of the best existing methods is the modified Prony algorithm which suffers in the presence of noise. In this paper we propose an algebraic method for the parameter estimation. The method, differently from the modified Prony method, is considerably robust to noise. The comparison of both through simulations confirm the good performance of the algebraic method

    Fast and scalable Gaussian process modeling with applications to astronomical time series

    Full text link
    The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large datasets. Gaussian Processes are a popular class of models used for this purpose but, since the computational cost scales, in general, as the cube of the number of data points, their application has been limited to small datasets. In this paper, we present a novel method for Gaussian Process modeling in one-dimension where the computational requirements scale linearly with the size of the dataset. We demonstrate the method by applying it to simulated and real astronomical time series datasets. These demonstrations are examples of probabilistic inference of stellar rotation periods, asteroseismic oscillation spectra, and transiting planet parameters. The method exploits structure in the problem when the covariance function is expressed as a mixture of complex exponentials, without requiring evenly spaced observations or uniform noise. This form of covariance arises naturally when the process is a mixture of stochastically-driven damped harmonic oscillators -- providing a physical motivation for and interpretation of this choice -- but we also demonstrate that it can be a useful effective model in some other cases. We present a mathematical description of the method and compare it to existing scalable Gaussian Process methods. The method is fast and interpretable, with a range of potential applications within astronomical data analysis and beyond. We provide well-tested and documented open-source implementations of this method in C++, Python, and Julia.Comment: Updated in response to referee. Submitted to the AAS Journals. Comments (still) welcome. Code available: https://github.com/dfm/celerit

    Matrix methods for Pad\'e approximation: numerical calculation of poles, zeros and residues

    Full text link
    A representation of the Pad\'e approximation of the ZZ-transform of a signal as a resolvent of a tridiagonal matrix JJ is given. Several formulas for the poles, zeros and residues of the Pad\'e approximation in terms of the matrix JJ are proposed. Their numerical stability is tested and compared. Methods for computing forward and backward errors are presented

    Non-asymptotic fractional order differentiators via an algebraic parametric method

    Get PDF
    Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie's modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations

    Optimized auxiliary oscillators for the simulation of general open quantum systems

    Full text link
    A method for the systematic construction of few-body damped harmonic oscillator networks accurately reproducing the effect of general bosonic environments in open quantum systems is presented. Under the sole assumptions of a Gaussian environment and regardless of the system coupled to it, an algorithm to determine the parameters of an equivalent set of interacting damped oscillators obeying a Markovian quantum master equation is introduced. By choosing a suitable coupling to the system and minimizing an appropriate distance between the two-time correlation function of this effective bath and that of the target environment, the error induced in the reduced dynamics of the system is brought under rigorous control. The interactions among the effective modes provide remarkable flexibility in replicating non-Markovian effects on the system even with a small number of oscillators, and the resulting Lindblad equation may therefore be integrated at a very reasonable computational cost using standard methods for Markovian problems, even in strongly non-perturbative coupling regimes and at arbitrary temperatures including zero. We apply the method to an exactly solvable problem in order to demonstrate its accuracy, and present a study based on current research in the context of coherent transport in biological aggregates as a more realistic example of its use; performance and versatility are highlighted, and theoretical and numerical advantages over existing methods, as well as possible future improvements, are discussed.Comment: 23 + 9 pages, 11 + 2 figures. No changes from previous version except publication info and updated author affiliation
    corecore