60 research outputs found

    Algebraic characterizations of distance-regular graphs

    Get PDF
    We survey some old and some new characterizations of distance-regular graphs, which depend on information retrieved from their adjacency matrix. In particular, it is shown that a regular graph with d+1 distinct eigenvalues is distance-regular if and only if a numeric equality, involving only the spectrum of the graph and the numbers of vertices at distance d from each vertex, is satisfied.Peer Reviewe

    Dual concepts of almost distance-regularity and the spectral excess theorem

    Get PDF
    Generally speaking, `almost distance-regular' graphs share some, but not necessarily all, of the regularity properties that characterize distance-regular graphs. In this paper we propose two new dual concepts of almost distance-regularity, thus giving a better understanding of the properties of distance-regular graphs. More precisely, we characterize mm-partially distance-regular graphs and jj-punctually eigenspace distance-regular graphs by using their spectra. Our results can also be seen as a generalization of the so-called spectral excess theorem for distance-regular graphs, and they lead to a dual version of it

    An Odd Characterization of the Generalized Odd Graphs

    Get PDF
    2010 Mathematics Subject Classification: 05E30, 05C50;distance-regular graphs;generalized odd graphs;odd-girth;spectra of graphs;spectral excess theorem;spectral characterization

    On almost distance-regular graphs

    Get PDF
    Distance-regular graphs are a key concept in Algebraic Combinatorics and have given rise to several generalizations, such as association schemes. Motivated by spectral and other algebraic characterizations of distance-regular graphs, we study `almost distance-regular graphs'. We use this name informally for graphs that share some regularity properties that are related to distance in the graph. For example, a known characterization of a distance-regular graph is the invariance of the number of walks of given length between vertices at a given distance, while a graph is called walk-regular if the number of closed walks of given length rooted at any given vertex is a constant. One of the concepts studied here is a generalization of both distance-regularity and walk-regularity called mm-walk-regularity. Another studied concept is that of mm-partial distance-regularity or, informally, distance-regularity up to distance mm. Using eigenvalues of graphs and the predistance polynomials, we discuss and relate these and other concepts of almost distance-regularity, such as their common generalization of (,m)(\ell,m)-walk-regularity. We introduce the concepts of punctual distance-regularity and punctual walk-regularity as a fundament upon which almost distance-regular graphs are built. We provide examples that are mostly taken from the Foster census, a collection of symmetric cubic graphs. Two problems are posed that are related to the question of when almost distance-regular becomes whole distance-regular. We also give several characterizations of punctually distance-regular graphs that are generalizations of the spectral excess theorem

    A short proof of the odd-girth theorem

    Get PDF
    Recently, it has been shown that a connected graph Γ\Gamma with d+1d+1 distinct eigenvalues and odd-girth 2d+12d+1 is distance-regular. The proof of this result was based on the spectral excess theorem. In this note we present an alternative and more direct proof which does not rely on the spectral excess theorem, but on a known characterization of distance-regular graphs in terms of the predistance polynomial of degree dd

    Pseudo-distance-regularised graphs are distance-regular or distance-biregular

    Full text link
    The concept of pseudo-distance-regularity around a vertex of a graph is a natural generalization, for non-regular graphs, of the standard distance-regularity around a vertex. In this note, we prove that a pseudo-distance-regular graph around each of its vertices is either distance-regular or distance-biregular. By using a combinatorial approach, the same conclusion was reached by Godsil and Shawe-Taylor for a distance-regular graph around each of its vertices. Thus, our proof, which is of an algebraic nature, can also be seen as an alternative demonstration of Godsil and Shawe-Taylor's theorem
    corecore