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Jordi Girona, 1–3, Mòdul C3, Campus Nord

08034 Barcelona, Catalonia (Spain)
email: fiol@mat.upc.es

September 9, 2001

Abstract

We survey some old and some new characterizations of distance-regular graphs,
which depend on information retrieved from their adjacency matrix. In particular, it
is shown that a regular graph with d + 1 distinct eigenvalues is distance-regular if and
only if a numeric equality, involving only the spectrum of the graph and the numbers
of vertices at distance d from each vertex, is satisfied.
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1 Introduction

Distance-regular graphs were introduced by Biggs in the early seventies (see [?]), by chang-
ing a symmetry-type requirement, that of distance-transitivity, to a regularity-type condi-
tion concerning the cardinality of some vertex subsets. To be more precise, recall that a
graph Γ with diameter D is distance-transitive when any two pairs of vertices (u, v) and
(x, y) at the same distance dist(u, v) = dist(x, y) ≤ D are indistinguishable from each
other; that is, there is an automorphism of the graph that takes u to x and v to y. Thus, a
distance-transitive graph ‘looks the same’ when viewed from each one of such pairs. In par-
ticular, for any vertex pair (u, v) and integers 0 ≤ i, j ≤ D, the number pij(u, v) of vertices
at distance i from u and at distance j from v only depends on k := dist(u, v), and we write
pij(u, v) = pk

ij for some constants pk
ij called the intersection numbers. Such a condition is

precisely the combinatorial property that characterizes (or defines) a distance-regular graph,
∗11th Inter. Conf. on Formal Power Series and Algebraic Combinatorics, Barcelona, 1999.
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and so we will refer to it as characterization (A). In fact, because of the many relations
existing between the intersection numbers, we can use a much more economic definition
which, for each distance k, considers only the pairs of distances (i, j) = (k − 1, 1), (k, 1),
and (k + 1, 1). (As we will show, their corresponding intersection numbers are sufficient
to determine the remaining ones; see e.g. [?].) Then, one of the most usual definitions of
distance-regularity is the following: (A’) A graph Γ is distance-regular when, for any two
vertices u and v at distance dist(u, v) = k the numbers ck, ak, and bk of vertices which are
adjacent to v, and at distance k − 1, k, and k + 1, respectively, from u only depend on k.
Thus, one intuitive way of looking at distance-regularity is to “hang” the graph from a given
vertex and observe the resulting different “layers” in which the vertex set is partitioned;
that is, the subsets of vertices at given distances from the root: If vertices in the same layer
are “neighbourhood-indistinguishable” from each other, and the whole configuration does
not depend on the chosen vertex, the graph is distance-regular.

Since their introduction, distance-regular graphs and their main generalization, the as-
sociation schemes defined below, have proved to be a key concept in algebraic combinatorics.
They have important connections with other branches of mathematics, such as geometry,
coding theory, group theory, design theory, as well as with other areas of graph theory. As
stated in the preface of the comprehensive textbook of Brouwer, Cohen and Neumaier [?],
this is because most finite objects bearing “enough regularity” are closely related to certain
distance-regular graphs.

Before proceeding with our exposition, we next introduce some basic notation. Through-
out the paper, Γ = (V,E) stands for a (simple and finite) connected graph, with vertex set
V = {u, v, w, . . .} and edge set E = {uv,wz, . . .}. Adjacency between vertices u and v (uv ∈
E) will be denoted by u ∼ v. The eccentricity of a vertex u is ecc(u) := maxv∈V dist(u, v)
and the diameter of the graph is D := maxu∈V ecc(u). The set Γk(u) represents the set of
vertices at distance k from vertex u. Thus, the degree of vertex u is δu := |Γ1(u)| ≡ |Γ(u)|
and our basic definition reads:

(A’) A graph Γ = (V,E) with diameter D is distance-regular if and only if, for any two
vertices u, v ∈ V at distance dist(u, v) = k, 0 ≤ k ≤ D, the numbers

ck(u, v) := |Γk−1(u)∩Γ(v)|, ak(u, v) := |Γk(u)∩Γ(v)|, bk(u, v) := |Γk+1(u)∩Γ(v)|,

do not depend on the chosen vertices u and v, but only on their distance k; in which
case they are denoted by ck, ak, and bk, respectively.

In this work, we aim to survey some other characterizations of distance-regular graphs
which are of an algebraic nature. Such characterizations rely mainly on the adjacency 01-
matrix A of a graph Γ—with rows and columns indexed by the vertices and (A)uv = 1 iff
u ∼ v—and/or some of its invariants, such as its spectrum

sp Γ := sp A = {λm(λ0)
0 , λ

m(λ1)
1 , . . . , λ

m(λd)
d }

where the eigenvalues λi, 0 ≤ i ≤ d, are in decreasing order and the superscripts denote
multiplicities; or their corresponding eigenspaces

Ei := Ker(A− λiI) (0 ≤ i ≤ d).
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We begin, in the next section, with the more “classical” characterizations, which involve
A and its generalizations in terms of distance, commonly known as the “distance matrices”.
In Section 3 we follow our study with the matrices representing the orthogonal projections
on the eigenspaces Ei, the so-called “principal idempotents” of A. Section 4 is devoted
to characterizations which depend, essentially, on the spectrum of A: the eigenvalues and
their multiplicities. In that section we discover that distance-regularity can be thought of as
an extremal (numeric) property of the graph; and the corresponding characterizations have
the striking particularity of involving only numerical (instead of matricial) identities. Such
types of results are extended further in the last section, to cope with characterizations of
some particular families of distance-regular graphs, which use only a part of the spectrum.

Throughout the paper we put emphasis on two ideas: The first one is that a characteri-
zation involving many identities, like (A), has usually its counterpart, in which the number
of such conditions has been substantially reduced, like (A’). In this case, both results are
identified with the same letter, the latter with a prime. The second idea is to stress the im-
portance of some families of orthogonal polynomials, the so-called distance and predistance
polynomials, in the characterization and study of distance-regularity.

In order to present and relate the above results, we end this introduction by recalling
some basic results from algebraic graph theory (for more details, see e.g. [?]):

(a.1) Since Γ is connected, A is an irreducible nonnegative matrix. Then, by the Perron-
Frobenius theorem, the maximum eigenvalue λ0 is simple, positive (in fact it coincides
with the spectral radius of A), and has a positive eigenvector ν, say, which is useful
to normalize in such a way that minu∈V νu = 1. Moreover, Γ is regular if and only if
ν = j, the all-1 vector (then λ0 = δ, the degree of Γ).

(a.2) The number of walks of length l ≥ 0 between vertices u and v is al
uv := (Al)uv.

(a.3) If Γ = (V,E) has spectrum sp Γ = {λm(λ0)
0 , . . . , λ

m(λd)
d } then the total number of

rooted closed walks of length l ≥ 0 is trAl =
∑d

i=0 m(λi)λl
i.

(a.4) If Γ has d+1 distinct eigenvalues, then {I,A,A2, . . . ,Ad} is a basis of the adjacency
or Bose-Mesner algebra A(Γ) of matrices which are polynomials in A. Moreover, if
Γ has diameter D,

dimA(Γ) = d + 1 ≥ D + 1

because {I,A,A2, . . . ,AD} is a linearly independent set ofA(Γ). Hence, the diameter
is always less than the number of distinct eigenvalues: D ≤ d.

(a.5) A graph Γ = (V,E) with eigenvalues λ0 > λ1 > · · · > λd is a regular graph if and
only if there exists a polynomial H ∈ Rd[x] such that H(A) = J , the all-1 matrix.
This polynomial is unique and it is called the Hoffman polynomial [?]. It has zeros
at the eigenvalues λi, i 6= 0, and H(λ0) = n := |V |. Thus,

H =
n

π0

d∏
i=1

(x− λi)

where π0 :=
∏d

i=1(λ0 − λi).
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2 The distance matrices

A generalization of the adjacency matrix, which is very useful in the study of distance-
regular graphs, is the concept of distance-k matrix: Let Γ be a graph with diameter D. For
every integer k (0 ≤ k ≤ D), the distance-k matrix Ak of Γ is defined as

(Ak)uv =

{
1 if dist(u, v) = k,
0 otherwise.

Then, A0 = I, the identity matrix, and A1 = A is the adjacency matrix of the graph.
Using these matrices, our first characterization (A) now reads:

(A) A graph Γ with diameter D is distance-regular if and only if, for any integers 0 ≤
i, j ≤ D, its distance matrices satisfy

AiAj =
D∑

k=0

pk
ijAk (0 ≤ i, j ≤ D), (1)

for some constants pk
ij (the intersection numbers).

In fact (??) is the main condition (together with A0 := I and
∑d

k=0 Ak = J) required
for a set {A0,A1, . . . ,Ad} of n × n 01-matrices to constitute a (symmetric) association
scheme; one of the fundamental concepts in combinatorics (see e.g. [?, ?]).

Going back to distance-regularity, notice that, according to the basic definition (A’),
it suffices to require the existence of the constants ck = pk

k−1,1, ak = pk
k,1 and bk = pk

k+1,1.
Consequently (A) becomes:

(A’) A graph Γ = (V,E) with diameter D is distance-regular if and only if, for some
constants ak, bk, ck (0 ≤ k ≤ D), c0 = bD = 0, its distance matrices satisfy the
three-term recurrence

AkA = bk−1Ak−1 + akAk + ck+1Ak+1 (0 ≤ k ≤ D), (2)

where, by convention, b−1 = cD+1 = 0.

The intersection array of Γ is then defined as

ι(Γ) :=

 0 c1 · · · cD−1 cD

a0 a1 · · · aD−1 aD

b0 b1 · · · bD−1 0

 .

Note that always a0 = 0 and c1 = 1. Moreover, since Γ must be regular of degree δ, say,
we have b0 = δ, and ak + bk + ck = δ for any 0 ≤ k ≤ D. Hence, it is also usual to write
the intersection array in its simplified form: ι(Γ) = {δ, b1, . . . , bD−1; 1, c2, . . . , cD}.
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By applying recurrence (??) starting from A0 = I and A1 = A, we see that, in a
distance-regular graph, each distance matrix Ak is a polynomial of degree k in A; that is

Ak = pk(A) ∈ A(Γ) (0 ≤ k ≤ D).

(Of course, p0 = 1 and p1 = x.) These polynomials are called the distance polynomials
and, as we shall see, satisfy some nice properties which facilitate the computation of the
different parameters of Γ. To begin with, notice that, since I + A + · · · + AD = J , (a.5)
implies p0 + p1 + · · ·+ pD = H, the Hoffman polynomial of Γ. Thus, assuming that Γ has
d + 1 distinct eigenvalues and using (a.4), we have

D ≤ d = dgrH = D.

As a conclusion, a distance-regular graph has “spectrally maximum” diameter D = d and,
since the D + 1 distance matrices are clearly linearly independent, {I,A, . . . ,AD} is a
basis for the adjacency algebra A(Γ). This important result was first proved by Damerell
[?]. Its converse also holds since, in terms of such a basis, every product AiAj has an
expression like (??) asserting the distance-regularity of the graph. This leads us to the
following characterization:

(B) A graph Γ with diameter D is distance-regular if and only if {I,A, . . . ,AD} is a basis
of the adjacency algebra A(Γ).

Moreover, notice that the distance polynomials (distance matrices) are uniquely deter-
mined by the constants ak, bk, ck. Thus, as mentioned above, such intersection numbers
determine all the others, so justifying definition (A’) (for more details, see [?]).

Since the distance polynomials {pk}0≤k≤D satisfy a three-term recurrence, they must
constitute an orthogonal system with respect to some (discrete) scalar product. Indeed,
with the inner product

〈p, q〉Γ :=
1
n

tr(p(A)q(A)) =
d∑

i=0

m(λi)
n

p(λi)q(λi) (p, q ∈ RD[x]) (3)

(with “normalized” weight function ρi := 1
nm(λi), 0 ≤ i ≤ d, since

∑d
i=0 ρi = 1) we get

〈pk, pl〉Γ =
1
n

tr(AkAl) =

{
nk if k = l,
0 otherwise.

(4)

where nk := |Γk(u)| represents the number of vertices at distance k from any vertex u. This
number is independent of u since, using that j is a λ0-eigenvector of A, we have

|Γk(u)| = (Akj)u = (pk(A)j)u = (pk(λ0)j)u = pk(λ0). (5)

Thus, nk = pk(λ0) or
‖pk‖2

Γ = pk(λ0).
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(In terms of the intersection numbers, we have nk = p0
kk = b0b1 · · · bk−1/c1c2 · · · ck.)

Looking back at (??), we now see that the intersection numbers pk
ij of a distance-regular

graph are just the Fourier coefficients of pipj in terms of the basis {pk}0≤k≤D:

pk
ij =

〈pipj , pk〉Γ
‖pk‖2

Γ

=
1

pk(λ0)

d∑
h=0

m(λh)
n

pi(λh)pj(λh)pk(λh) (0 ≤ i, j, k ≤ d). (6)

Moreover, the highest degree polynomial pd allow us to compute the multiplicities of the
eigenvalues of Γ by the formulas:

m(λi) =
φ0pd(λ0)
φipd(λi)

(0 ≤ i ≤ d) (7)

where φi =
∏d

j=0(j 6=i)(λi − λj) (see Bannai and Ito [?]). The value at λ0 of the distance
polynomial pd can be computed from the spectrum through the expression

pd(λ0) = n

(
d∑

i=0

π2
0

m(λi)π2
i

)−1

(8)

where the πi’s are moment-like parameters defined by

πi := |φi| =
d∏

j=0,j 6=i

|λi − λj | (0 ≤ i ≤ d).

These parameters seem to have special relevance to the study of some properties of graphs
from their spectra (see [?, ?, ?, ?]).

Alternatively, the multiplicities can also be computed by using all the distance polyno-
mials (see Biggs [?]):

m(λi) = n

 d∑
j=0

1
nj

pj(λi)2
−1

(0 ≤ i ≤ d) (9)

where nj = pj(λ0).
As we shall see, sometimes it is useful to consider such an orthogonal system when the

graph is not distance-regular, not even regular. Thus, given a graph Γ with spectrum spΓ =
{λm(λ0)

0 , . . . , λ
m(λd)
d }, we consider the scalar product 〈·, ·〉Γ defined as in (??)—with ‖ν‖2

instead of n—and its corresponding orthogonal sequence of polynomials p0(= 1), p1, . . . , pd,
which satisfies a three-term recurrence like (??), and is uniquely characterized by any of
the following conditions (see [?, ?]):

(b.1) ‖pk‖2
Γ = pk(λ0);

(b.2) ak + bk + ck = λ0 (0 ≤ k ≤ d);
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(b.3) qd :=
∑d

k=0 pk = ‖ν‖2
π0

∏d
i=1(x − λi), where ν is the positive eigenvector and

π0 :=
∏d

i=1(λ0 − λi).

Such polynomials have been called “proper” in some previous work by the authors but,
taking into account their role in the distance-regularity context, it seems more appropriate
to call them the predistance polynomials. Here we shall use this name. Moreover, note
that, when Γ is a regular graph on n vertices, we have ‖ν‖2 = ‖j‖2 = n; hence the above
“sum polynomial” qd coincides with the Hoffman polynomial H in (a.5). In general, the
polynomial qd satisfies (qd(A))uv = νuνv for any u, v ∈ V and so we call it the Hoffman-like
polynomial.

Besides proving that for every distance-regular graph there exist the distance polyno-
mials, we have shown that the converse result also holds. Indeed, if every distance-k matrix
of a graph is a polynomial of degree k in A, 0 ≤ k ≤ D, the above reasonings lead again
to D = d and to the orthogonality of these polynomials with respect to the scalar product
(??). Consequently, the distance matrices are a basis of A(Γ) and (B) applies. Let us make
this result explicit:

(C) A graph Γ with diameter D is distance-regular if and only if, for any integer k,
0 ≤ k ≤ D, the distance-k matrix Ak is a polynomial of degree k in A; that is:

Ak = pk(A) (0 ≤ k ≤ D). (10)

As already noticed, the existence of the first two such polynomials, p0 and p1, is always
guaranteed since A0 = I and A1 = A. In fact, if every vertex u ∈ V has the maximum
possible eccentricity allowed by the spectrum in (a.4) (that is, the number of distinct
eigenvalues minus one: ecc(u) = d), the existence of the highest degree distance polynomial
suffices:

(C’) A graph Γ with diameter D and d + 1 distinct eigenvalues is distance-regular if and
only if all its vertices have spectrally maximum eccentricity d (⇒ D = d) and the
distance matrix Ad is a polynomial of degree d in A:

Ad = pd(A).

This was proved by Garriga, Yebra and the author [?] in the context of “pseudo-distance-
regularity”—a generalization of distance-regularity that makes sense even for non-regular
graphs.

To give a last characterization of distance-regularity involving the distance matrices,
we study now the role of the powers of the adjacency matrix. To this end, note first that,
if Γ is distance-regular, the l-th power of A, l ≥ 0, can be written in terms of the basis
pk(A) = Ak, 0 ≤ k ≤ D(= d), as:

Al =
D∑

h=0

〈xl, ph〉
‖ph‖2

Ah.
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Thus, the number of walks al
uv = (Al)uv of length l between two vertices u, v at distance k

is just the above Fourier coefficient of Ak:

al
uv =

〈xl, pk〉
‖pk‖2

=
1

pk(λ0)

d∑
i=0

m(λi)
n

λl
ipk(λi).

Hence, this number only depends on k = dist(u, v), and we write al
uv = al

k and

Al =
D∑

k=0

al
kAk (l ≥ 0). (11)

where, clearly, al
k = 0 when l < k.

Conversely, assume that, for a certain graph and any 0 ≤ k ≤ l ≤ D, there are constants
al

k satisfying (??). As a matrix equation,

I
A
A2

·
·

AD


=



a0
0

a1
0 a1

1

a2
0 a2

1 a2
2

· · · ·
· · · · ·

aD
0 aD

1 · · · aD
D





I
A
A2

·
·

AD


(12)

where the lower triangular matrix T , with rows and columns indexed with the integers
0, 1 . . . , D, has entries (T )lk = al

k. In particular, note that a0
0 = a1

1 = 1 and a1
0 = 0.

Moreover, since ak
k > 0, such a matrix has an inverse which is also a lower triangular matrix

and hence each Ak is a polynomial of degree k in A. Therefore, according to (C), we are
dealing with a distance-regular graph. (Of course, the entries of T−1 are the coefficients of
the distance polynomials.)

In conclusion, we have justified the following characterization (see e.g. Rowlinson [?]):

(D) A graph Γ = (V,E) is distance-regular if and only if, for each non-negative integer l,
the number al

uv of walks of length l between two vertices u, v ∈ V only depends on
k = dist(u, v).

Again, we do not need to impose the invariance condition for each value of l. For
instance, if Γ is regular we have the following result:

(D’) A regular graph Γ = (V,E) with diameter D is distance-regular if and only if there
are constants ak

k and ak+1
k such that, for any two vertices u, v ∈ V at distance k, we

have ak
uv = ak

k and ak+1
uv = ak+1

k for any 0 ≤ k ≤ D − 1, and aD
uv = aD

D for k = D.

To illustrate some typical reasonings involving the intersection numbers, let us prove (D’)
from the usual definition of distance-regularity in (A’): Assume first that Γ is distance-
regular. As the result clearly holds for k = 0 since a0

uu = 1 = a0
0 and a1

uu = 0 = a1
0, we
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shall use induction and assume that ak−1
uv = ak−1

k−1 and ak
uv = ak

k−1 for any vertices u, v at
distance k − 1. Then, for any vertices u, v at distance k we get:

ak
uv =

∑
w∈Γk−1(u)∩Γ(v)

ak−1
uw = ak−1

k−1|Γk−1(u) ∩ Γ(v)| (13)

so that ak
k = ak−1

k−1ck. Similarly, using this equality and

ak+1
uv =

∑
w∈[Γk−1(u)∪Γk(u)]∩Γ(v)

ak
uw = ak

k−1|Γk−1(u) ∩ Γ(v)|+ ak
k|Γk(u) ∩ Γ(v)|, (14)

we infer that ak+1
k = ak

k−1ck + ak−1
k−1ckak.

Conversely, if we suppose that such constants ak
k and ak

k+1 do exist and dist(u, v) = k,
from ak

uv = ak
k and (??) we obtain that

ck(u, v) = |Γk−1(u) ∩ Γ(v)| = ak
k

ak−1
k−1

does not depend on the chosen vertices u and v ∈ Γk(u) and so ck(u, v) = ck. Analogously,
from ak+1

uv = ak+1
k and (??) we get

ak+1
k = ak

k−1

ak
k

ak−1
k−1

+ ak
k|Γk(u) ∩ Γ(v)|

where we have used the above value of ck. Consequently, the value

ak(u, v) = |Γk(u) ∩ Γ(v)| =
ak+1

k

ak
k

−
ak

k−1

ak−1
k−1

is also independent of the vertices u, v, provided that dist(u, v) = k, and ak(u, v) = ak.
Finally, since Γ is regular, of degree δ say,

bk(u, v) = |Γk+1(u) ∩ Γ(v)| = δ − ck − ak,

shows that bk is also independent of u, v and, hence, Γ is a distance-regular graph.

3 The idempotent matrices

For each eigenvalue λi, 0 ≤ i ≤ d, let U i be the matrix whose columns form an orthonormal
basis of its eigenspace Ei := Ker(A−λiI). The (principal) idempotents of A are the matrices
Ei := U iU

>
i representing the orthogonal projections onto Ei. In particular, E0 = 1

‖ν‖2 νν>,
where ν is the positive (column) λ0-eigenvector. Alternatively, in terms of A,

Ei =
1
φi

d∏
j=0,j 6=i

(A− λjI) (0 ≤ i ≤ d) (15)

where φi =
∏d

j=0(j 6=i)(λi − λj). Accordingly, such matrices satisfy the following properties:
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(c.1) EiEj =

{
Ei if i = j
0 otherwise;

(c.2) AEi = λiEi;

(c.3) p(A) =
∑d

i=0 p(λi)Ei, for any polynomial p ∈ R[x].

In particular, taking p = 1 in (c.3), we have

E0 + E1 + · · ·+ Ed = I (16)

(as expected, since the sum of all orthogonal projections gives the original vector) and,
considering p = x, we get the so-called spectral decomposition theorem:

d∑
i=0

λiEi = A (17)

(see e.g. Godsil [?]). More generally, taking p = xl, each power of A can be expressed as a
linear combination of the idempotents Ei:

Al =
d∑

i=0

λl
iEi. (18)

Consequently, since {I,A, . . . ,Ad} is a basis of A(Γ), so is the set {E0,E1, . . . ,Ed}—a
fact that follows also from (??)—and we can expect to have characterizations of distance-
regularity in terms of the entries of the above idempotents. These numbers were called in [?]
the crossed (uv-)local multiplicities of λi, and were denoted by muv(λi). Notice that, if zui

represents the orthogonal projection of the u-canonical vector eu on Ei, that is zui := Eieu,
the crossed local multiplicities correspond to the scalar products:

muv(λi) := (Ei)uv = 〈Eieu, ev〉 = 〈Eieu,Eiev〉 = 〈zui,zvi〉 (u, v ∈ V ).

For instance, if the graph is regular, then the eigenvector of λ0 is the all-1 vector j, and
the above gives muv(λ0) = 〈 1

nj, 1
nj〉 = 1/n for any u, v ∈ V , and hence E0 = 1

nJ .
Suppose that Γ is a distance-regular graph, so that it has spectrally maximum diameter

D = d. Then, taking p in (c.3) as the distance-polynomial pk, 0 ≤ k ≤ d, we get

Ak =
d∑

i=0

pk(λi)Ei (0 ≤ k ≤ d)

or, in matrix form,
A0

A1
...

Ad

 =


p0(λ0) p0(λ1) . . . p0(λd)
p1(λ0) p1(λ1) . . . p1(λd)

...
...

...
pd(λ0) pd(λ1) . . . pd(λd)




E0

E1
...

Ed

 . (19)
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But, because of the orthogonal property (??) with respect to the scalar product (??), the
inverse of the matrix P , with entries (P )ji = pj(λi), 0 ≤ j, i ≤ d, is just

P−1 =
1
n


m(λ0)

p0(λ0)
n0

m(λ0)
p1(λ0)

n1
. . . m(λ0)

pd(λ0)
nd

m(λ1)
p0(λ1)

n0
m(λ1)

p1(λ1)
n1

. . . m(λ1)
pd(λ1)

nd
...

...
...

m(λd)
p0(λd)

n0
m(λd)

p1(λd)
n1

. . . m(λd)
pd(λd)

nd


where nj = pj(λ0). (As a by-product, note that from (P−1P )ii = 1, 0 ≤ i ≤ d, we get the
formulas for the multiplicities given in (??).) Consequently,

El =
d∑

j=0

(P−1)ljAj =
m(λl)

n

d∑
j=0

pj(λl)
pj(λ0)

Aj (0 ≤ l ≤ d)

and, equating the corresponding (u, v) entries, we observe that in a distance-regular graph
the crossed uv-local multiplicities only depend on the distance k = dist(u, v); a result noted
e.g. by Godsil in [?]. More precisely, we can write muv(λl) = mkl, where

mkl =
m(λl)pk(λl)

npk(λ0)
(0 ≤ k, l ≤ d). (20)

Again, the converse result also holds because, if

El =
D∑

j=0

mjlAj (0 ≤ l ≤ d) (21)

for some constants mjl, the fact that {E0,E1, . . . ,Ed} is a basis implies that {I,A, . . . ,AD}
is also a basis, and then (B) applies.

All these facts prove the next characterization:

(E) A graph Γ with diameter D and eigenvalues λ0 > λ1 > · · · > λd is a distance-regular
graph if and only if, for any given eigenvalue λl, 0 ≤ l ≤ d, the crossed uv-local
multiplicity muv(λl) depends only on the distance dist(u, v) = k, 0 ≤ k ≤ D.

In fact, in the spirit of our previous results, we can prove the following (see [?]):

(E’) A regular graph Γ, with eigenvalues λ0 > λ1 > · · · > λd and diameter D, is distance-
regular if and only if there exist constants mk1 and mkd such that muv(λ1) = mk1

and muv(λd) = mkd for any two vertices u, v ∈ V with dist(u, v) = k, 0 ≤ k ≤ D.

To emphasize the importance of the above constants mkl, we end this section by showing
its relation with the so-called “Krein parameters” of a distance-regular graph. First note
that the adjacency algebra A(Γ) is also closed under the pointwise product ◦ of matrices
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(also called Schur product), since Ai ◦Aj = O if i 6= j and Ai ◦Ai = Ai. Hence, the Krein
parameters qk

ij are the numbers satisfying

Ei ◦Ej =
1
n

d∑
k=0

qk
ijEk (0 ≤ i, j ≤ d).

or, using (??),
d∑

h=0

mhimhjAh =
1
n

d∑
h=0

qh
ijEh.

Then, if we multiply both terms by Ek =
∑d

h=0 mhkAh and take traces (this is equivalent
to computing the corresponding scalar products), we get

d∑
h=0

mhimhjmhk trA2
h =

1
n

qk
ij trEk.

where trA2
h = ‖ph‖2

Γ = ph(λ0) = nh and tr Ek = m(λk). Accordingly, using (??),

qk
ij =

m(λi)m(λj)
n2

d∑
h=0

ph(λi)ph(λj)ph(λk)
n2

h

(0 ≤ i, j, k ≤ d). (22)

Like the intersection numbers pk
ij given by (??), the Krein parameters are known to be

nonnegative (see e.g. [?, ?]). This fact, known as the Krein conditions, together with the
integrality of the multiplicities given by (??) or (??), turn to be strong conditions for the
existence of a distance-regular graph with a given intersection array.

4 The spectrum

Of course, it would be nice to have characterizations of distance-regularity involving only
the spectrum. The first question is: Can we see from the spectrum of a graph whether it is
distance-regular? In this context, it has been known for a long time that the answer is ‘yes’
when D ≤ 2 and ‘not’ if D ≥ 4. Indeed, a graph with diameter D = 2 is strongly regular
iff it is regular (a property that can be identified from the spectrum) and has three distinct
eigenvalues (d = 2). On the other hand, the ‘Hoffman graph’ [?], with diameter D = 4,
is cospectral with the (2-antipodal) distance-regular graph Q4—the 4-cube—but it is not
distance-regular. Thus, the only undecided case was D = 3, but Haemers [?] gave also
a negative answer constructing many Hoffman-like counterexamples for this diameter (see
also [?]). Thus, in general the spectrum is not sufficient to ensure distance-regularity and, if
we want to go further, we must require the graph to satisfy some additional conditions. In
this direction, Van Dam and Haemers [?] showed that, in the case D = 3, such a condition
could be the specification of the number nd(u) = |Γd(u)| of vertices at “extremal distance”
D = d of any given vertex u ∈ V . Then, Garriga and the author [?] solved the general case,
characterizing distance-regular graphs as those regular graphs whose number of vertices at
distance d from each vertex is what it should be; that is, the value of pd(λ0) given in (??).

12



To make explicit these and some other related results, we first introduce a local version
of the predistance polynomials and enunciate a key result involving them: Namely, an upper
bound for their value at λ0 and the characterization of the case when the bound is attained
(for more details, see [?, ?]). To construct such polynomials we use the diagonal entries
of the above idempotents, that is the crossed uv-local multiplicities when u = v. In this
case muu(λi) = (Ei)uu = ‖zui‖2 ≥ 0, denoted also by mu(λi), is referred to as the u-local
multiplicity of λi. (In particular, from E0 = (1/‖ν‖2)νν> we see that mu(λ0) = ν2

u/‖ν‖2.)
In [?] it was noted that when the graph is “seen” from vertex u, the u-local multiplicities
play a role similar to that of the standard multiplicities, so justifying the name. Indeed,
by (??) note that, for each vertex u, the u-local multiplicities of all the eigenvalues add
up to 1; whereas the multiplicity of each eigenvalue λi is the sum, extended to all vertices,
of its local multiplicities since trEi = tr(U iU

>
i ) = m(λi). Moreover, by (??) the number

of closed walks of length l going through vertex u, al
uu, can be computed in a similar

way as the whole number of such rooted walks in Γ is computed by using the “global”
multiplicities—see (a.3). The u-local multiplicities are precisely the squares of the “angles”
at u, introduced by Cvetković as the cosines cos βui, 0 ≤ i ≤ d, with βui being the angle
between eu and the eigenspace Ei. For a number of applications of these parameters, see
for instance the recent book of Cvetković, Rowlinson, and Simić [?].

Using the local multiplicities as the values of the weight function, we can now define
the (u-)local scalar product :

〈p, q〉u := (p(A)q(A))uu =
d∑

i=0

mu(λi)p(λi)q(λi) (23)

with normalized weight function ρi := mu(λi), 0 ≤ i ≤ d, since
∑d

i=0 ρi = 1. Notice that the
scalar product in (??) is simply the average, over all vertices, of the local scalar products:

〈p, q〉Γ =
1
n

∑
u∈V

〈p, q〉u. (24)

Associated to this product, we define a new orthogonal sequence of polynomials {pu
k}0≤k≤du

(where du is the number of eigenvalues λi 6= λ0 such that mu(λi) 6= 0) with dgr pu
k = k,

called the (u-local) predistance polynomials, satisfying the same properties as the predis-
tance polynomials. For instance,

〈pu
k , pu

l 〉u = δklp
u
k(λ0) and ‖pu

k‖2
u = pu

k(λ0). (25)

Before presenting the main property of these polynomials, we need to introduce a little
more notation. Let Nk(u) be the set of vertices that are at distance not greater than k from
u, the so-called k-neighbourhood of u. For any vertex subset U , let ρU be the characteristic
vector of U ; that is ρU :=

∑
u∈U eu. So, ρNk(u) is just the u column (or row) of the sum

matrix I + A + · · · + Ak, with square (Euclidean) norm ‖ρNk(u)‖2 = sk(u) := |Nk(u)|.
Let us also consider the sums of successive polynomials pu

k , denoted by qu
k :=

∑k
h=0 pu

h, and
satisfying

qu
k (λ0) =

k∑
h=0

pu
h(λ0) =

k∑
h=0

‖pu
h‖2

u = ‖qu
k‖2

u. (26)
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In [?] Garriga and the author proved the following result: Let u be a fixed vertex of a
regular graph Γ. Then, for any polynomial q ∈ Rk[x],

q(λ0)
‖q‖u

≤ ‖ρNk(u)‖ (27)

and equality holds if and only if

1
‖q‖u

q(A)eu =
1

‖ρNk(u)‖
ρNk(u). (28)

Moreover, if this is the case, q is any multiple of qu
k , say q = qu

k (equality understood in
the quotient ring R[x]/I where I is the ideal generated by the polynomial with zeroes the
du + 1 eigenvalues with non-null u-local multiplicity). Hence, using (??), Eqs. (??) and
(??) become:

qu
k (λ0) = sk(u) and qu

k (A)eu = ρNk(u). (29)

Let us now use the above results to obtain a new characterization of distance-regularity.
We already know that, in a distance-regular graph Γ, the number of vertices at distance
not greater than k from any given vertex u is a constant since

sk(u) =
k∑

h=0

nk(u) =
k∑

h=0

pk(λ0) = qk(λ0).

In order to show that the converse also holds, let Γ be a regular graph with predistance
polynomials {pk}0≤k≤d, and consider, for some fixed k, the sum polynomial qk :=

∑k
h=0 pk

which also satisfies qk(λ0) = ‖qk‖2
Γ. Then, by (??), we have qk(λ0)/‖qk‖u ≤ ‖ρNk(u)‖, or

‖qk‖2
u

qk(λ0)2
≥ 1
‖ρNk(u)‖2

=
1

sk(u)
(u ∈ V ). (30)

Then, by adding over all vertices we get

∑
u∈V

1
sk(u)

≤ 1
qk(λ0)2

∑
u∈V

‖qk‖2
u =

n

qk(λ0)2
‖qk‖2

Γ =
n

qk(λ0)

where we have used the relationship (??) between the scalar products involved. Thus, we
conclude that qk(λ0) never exceeds the harmonic mean of the numbers sk(u):

qk(λ0) ≤
n∑

u∈V
1

sk(u)

. (31)

What is more, equality can only holds if and only if all inequalities in (??) are also equalities
and, hence, qk = αuqu

k for every vertex u ∈ V and some constants αu. Let us see that all
these constants are equal to 1. Let u, v be two adjacent vertices and assume k ≥ 1.
Using the second equality in (??) we have that (qu

k (A))uv = (qv
k(A))vu = 1 and, therefore,

14



1
αu

(qk(A))uv = 1
αv

(qk(A))vu = 1. Hence αu = αv and, since Γ is supposed to be connected,
qk = αqu

k for some constant α and any vertex u. Moreover, using these equalities and (??),

n

α
qk(λ0) =

∑
u∈V

qu
k (λ0) =

∑
u∈V

‖qu
k‖2

u =
1
α2

∑
u∈V

‖qk‖2
u =

n

α2
‖qk‖2

Γ =
n

α2
qk(λ0)

whence α = 1 and qk = qu
k for any u ∈ V . Consequently, by (??), qk(A)eu = ρNk(u) for

every vertex u ∈ V . In matrix form,

qk(A) = I + A + · · ·+ Ak.

Then, if we assume that Γ has d+1 eigenvalues and the above holds for any 1 ≤ k ≤ d (the
case k = 0 being trivial since q0 = p0 = 1), we have that pk(A) = qk(A) − qk−1(A) = Ak

for any 1 ≤ k ≤ d and, by (C), Γ is a distance-regular graph. We have just proved our next
characterization.

(F) A regular graph Γ with n vertices and predistance polynomials {pk}0≤k≤d is distance-
regular if and only if

qk(λ0) =
n∑

u∈V
1

sk(u)

(0 ≤ k ≤ d) (32)

where qk = p0 + · · ·+ pk.

By using the spectrum of the Laplacian matrix of Γ, an equivalent result was proved
by Hajaj in [?], where the sequence of the above harmonic means, for k = 0, 1, . . . , d, is
referred to as the “harmonic mean of the growth” of Γ.

Alternatively, considering the “base vertices” one by one, we may give a characterization
which does not use the sum polynomials qk or the harmonic means of the sk(u)’s:

(G) A graph Γ = (V,E) with predistance polynomials {pk}0≤k≤d is distance-regular if and
only if the number of vertices at distance k from every vertex u ∈ V is

nk(u) = pk(λ0) (0 ≤ k ≤ d). (33)

Indeed, if (??) holds we have qk(λ0) = p0(λ0) + · · ·+ pk(λ0) = n0(u) + · · ·+ nk(u) = sk(u)
for every vertex u, and (??) trivially applies. Notice also that, in this case, we do not need
to assume the regularity of the graph, since it is guaranteed by considering k = 1 in (??):
δu = n1(u) = p1(λ0) for any u ∈ V (whence p1(λ0) = λ0).

But, once more, not all the conditions in (??) or (??) are necessary to ensure distance-
regularity. In fact, if the graph is regular (which guarantees the case k = 1 since then
p1 = x), only the case k = d− 1 matters. This is because, if (??) is satisfied for such a k,
we infer that qd−1(A) =

∑d−1
h=0 Ak and so, pd(A) = H(A) − qd−1(A) = J − Ad−1 = Ad,

where H is the Hoffman polynomial defined in (a.5). Thus, from (C’), we can state the
following:
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(F’) A regular graph Γ with n vertices and spectrum sp Γ = {λm(λ0)
0 , . . . , λ

m(λd)
d } is

distance-regular if and only if∑
u∈V

n
n−nd(u)∑

u∈V
nd(u)

n−nd(u)

=
d∑

i=0

π2
0

m(λi)π2
i

. (34)

In the above we have used that, by property (b.3), qd−1(λ0) = qd(λ0)−pd(λ0) = n−pd(λ0),
and the value of pd(λ0) given in (??). Alternatively, considering again the vertices one by
one, we obtain the following result:

(G’) A regular graph Γ = (V,E) with with n vertices and spectrum spΓ = {λm(λ0)
0 , . . . , λ

m(λd)
d }

is distance-regular if and only if the number of vertices at (spectrally maximum) dis-
tance d from each vertex u ∈ V is

nd(u) = n

(
d∑

i=0

π2
0

m(λi)π2
i

)−1

. (35)

As already mentioned, this was proved by Garriga and the author in [?], generalizing
some previous results of Haemers and Van Dam [?] (the case d = 3), and Garriga, Yebra
and the author [?] (the case nd(u) = 1). Finally, notice that, since Ak = pk(A) implies
nk(u) = pk(λ0) for every u ∈ V —see (??)—both characterizations (C’) and (G’) are closely
related.

5 Characterizing some families

In this last section we shall give some “spectral” characterizations which apply to certain
specific families of distance-regular graphs. Now the main results will be labeled with lower
case letters, to emphasize their more restricted framework. We begin with the above case
of 2-antipodal graphs—that is, nd(u) = 1—where, in fact, only the distinct eigenvalues
matter, as their multiplicities can be deduced from them by the formulae

mi =
π0

πi
(0 ≤ i ≤ d).

Furthermore, in this case we do not need to require regularity since it is implied by condition
(??); see [?]. Then characterization (G’) becomes:

(a) A graph Γ with eigenvalues λ0 > λ1 > · · · > λd is a 2-antipodal distance-regular
graph if and only if, for each vertex u of Γ,

nd(u) = n

(
d∑

i=0

π0

πi

)−1

= 1. (36)
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The graphs satisfying the second equality of (??), that is
∑d

i=0(π0/πi) = n, are called
boundary graphs since they satisfy an extremal property that arises from a bound for the
diameter of a graph in terms of its distinct eigenvalues. Namely, it was proved in [?] that,
if Γ is regular,

d∑
i=0

π0

πi
> n ⇒ D ≤ d− 1.

From the result in (??), some other spectral characterizations have been given for special
classes of distance-regular graphs. Thus, a generalization of (a) for r-antipodal distance-
regular graphs was proved in [?], and reads as follows:

(b) A regular graph Γ, with eigenvalues λ0 > λ1 > · · · > λd, is an r-antipodal distance-
regular graph if and only if the distance graph Γd (that is, the graph whose adjacency
matrix is Ad) is constituted by disjoint copies of the complete graph Kr, with r
satisfying an expression in terms of n and the distinct eigenvalues. Namely,

r = 2n

(
d∑

i=0

π0

πi

)−1

. (37)

Note that the case r = 2 corresponds to (??). In other words, we can restate (b) in the
following way (see [?]):

(b) A regular graph Γ as above is an r-antipodal distance-regular graph iff the distance-d
graph Γd is constituted by 1

2

(∑d
i=0

π0
πi

)
disjoint copies of the complete graph Kr.

Recall that a δ-regular graph Γ on n vertices is called (n, δ; a, c)-strongly regular if
every pair of adjacent (respectively nonadjacent) vertices have a (respectively c) common
neighbours. Thus, if connected, a strongly regular graph Γ is the same as a distance-regular
graph with diameter two. Otherwise, it is known that Γ is constituted by several copies of
Kr.

Grouping the ideas of distance-regularity and strong-regularity, Fiol [?] proposed the
following definition: A graph Γ with diameter D = d is called (n, δ; a, c)-strongly distance-
regular if Γ is distance-regular and its distance-d graph Γd is strongly regular with the
indicated parameters. Some known examples of such graphs are the connected strongly
regular graphs, with distance-d graph Γd = Γ (the complement of Γ), and the r-antipodal
distance-regular graphs with Γd = mKr (m disjoint copies of Kr) so that they are (n, δ; r−
1, 0)-strongly distance-regular graphs. Hence, some spectral conditions for a regular graph
to be strongly distance-regular have been already given above. In particular, notice that
2-antipodal distance-regular graphs characterized in (a) correspond to the case a = c = 0.
In this context, the more general case a = c was dealt with in [?], where one can find the
following result:

(c) Let Γ be a regular graph on n vertices, with distinct eigenvalues λ0 > λ1 > · · · > λd,
d > 1. Then Γ is (n, δ; c, c)-strongly distance-regular if and only if, the number of
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vertices at distance d from every vertex u of G is:

nd(u) =
n(n− 1)(∑d

i=1
π0
πi

)2
+ n− 1

. (38)

Moreover, in such a case, the above parameters are δ = nd := nd(u), c = nd(nd−1)/(n−1),
and the multiplicity of eigenvalue λi is

mi =
π0

πi

√
(n− 1)nd

n− nd
= (n− 1)

1
πi∑d

j=1
1
πj

(1 ≤ i ≤ d). (39)

The case d = 3 of (c) was proved by Van Dam [?] using the Laplacian matrix of Γ
and Haemers’ method of eigenvalue interlacing [?]. In this case, he also offered examples of
graphs satisfying the result. Namely, the odd graph O4 defined below (4-regular, n = 35,
n3 = 18), and the generalized hexagons GH(q, q), with q a prime power, ((q + 1)-regular,
n = 2(q + 1)(q4 + q2 + 1), n3 = q5); for a detailed description of these graphs, see e.g.
[?]–[?],[?].

On the other hand notice that, for the case nd(u) = 1, the results (a) and (c) are
equivalent since, in both cases, Γ must be a 2-antipodal distance-regular graph.

Finally, for general values of a and c, and d = 3, the following characterization has been
recently given in [?].

(d) A regular graph Γ, with n vertices and distinct eigenvalues λ0 > λ1 > λ2 > λ3, is
strongly distance-regular if and only if λ2 = −1, and, for every vertex u of Γ,

n3(u) =
(n− λ0 − 1)[π0/(λ0 + 1)− n(λ0 + λ1λ3)]

π0 − n(λ0 + λ1λ3)
. (40)

If this is the case, a and c satisfy also some expressions in terms of the eigenvalues.
Although we are not aware, up to now, of any generalization of the above theorem

for d > 3, we do not if fact know of any example of a strongly distance-regular graph
with diameter greater than three (apart from the r-antipodal ones). This suggests we end
with the following conjecture: A (connected) regular graph Γ, with n vertices and distinct
eigenvalues λ0 > λ1 > · · · > λd, is strongly distance-regular if and only if one of the three
following conditions holds.

1. Γ is strongly regular (d = 2);

2. d = 3, λ2 = −1, and Γ3 is k-regular with degree k satisfying (??);

3. Γ is an antipodal distance-regular graph (that is, Γd is constituted by disjoint copies
of Kr with r satisfying (??)).

Thus this result, if true, would imply that any strongly distance-regular graph is antipodal
or has diameter at most three.
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