7 research outputs found

    Spectrally approximating large graphs with smaller graphs

    Get PDF
    How does coarsening affect the spectrum of a general graph? We provide conditions such that the principal eigenvalues and eigenspaces of a coarsened and original graph Laplacian matrices are close. The achieved approximation is shown to depend on standard graph-theoretic properties, such as the degree and eigenvalue distributions, as well as on the ratio between the coarsened and actual graph sizes. Our results carry implications for learning methods that utilize coarsening. For the particular case of spectral clustering, they imply that coarse eigenvectors can be used to derive good quality assignments even without refinement---this phenomenon was previously observed, but lacked formal justification.Comment: 22 pages, 10 figure

    Spectrally approximating large graphs with smaller graphs

    Get PDF
    How does coarsening affect the spectrum of a general graph? We provide conditions such that the principal eigenvalues and eigenspaces of a coarsened and original graph Laplacian matrices are close. The achieved approximation is shown to depend on standard graph-theoretic properties, such as the degree and eigenvalue distributions, as well as on the ratio between the coarsened and actual graph sizes. Our results carry implications for learning methods that utilize coarsening. For the particular case of spectral clustering, they imply that coarse eigenvectors can be used to derive good quality assignments even without refinement---this phenomenon was previously observed, but lacked formal justification

    Well-posedness and discretization for a class of models for mixed-dimensional problems with high-dimensional gap

    Get PDF
    In this work, we show the underlying mathematical structure of mixed-dimensional models arising from the composition of graphs and continuous domains. Such models are becoming popular in applications, in particular, to model the human vasculature. We first discuss the model equations in the strong form, which describes the conservation of mass and Darcy's law in the continuum and network as well as the coupling between them. By introducing proper scaling, we propose a weak form that avoids degeneracy. Well-posedness of the weak form is shown through standard Babu\v ska--Brezzi theory. We also develop the mixed formulation finite-element method and prove its well-posedness. A mass-lumping technique is introduced to derive the two-point flux approximation (TPFA) type discretization as well, due to its importance in applications. Based on the Babu\v ska--Brezzi theory, error estimates can be obtained for both the finite-element scheme and the TPFA scheme. We also discuss efficient linear solvers for discrete problems. Finally, we present some numerical examples to verify the theoretical results and demonstrate the robustness of our proposed discretization schemes.acceptedVersio

    Laplacians Of Cellular Sheaves: Theory And Applications

    Get PDF
    Cellular sheaves are a discrete model for the theory of sheaves on cell complexes. They carry a canonical cochain complex computing their cohomology. This thesis develops the theory of the Hodge Laplacians of this complex, as well as avenues for their application to concrete engineering and data analysis problems. The sheaf Laplacians so developed are a vast generalization of the graph Laplacians studied in spectral graph theory. As such, they admit generalizations of many results from spectral graph theory and the spectral theory of discrete Hodge Laplacians. A theory of approximation of cellular sheaves is developed, and algorithms for producing spectrally good approximations are given, as well as a generalization of the notion of expander graphs. Sheaf Laplacians allow development of various dynamical systems associated with sheaves, and their behavior is studied. Finally, applications to opinion dynamics, extracting network structure from data, linear control systems, and distributed optimization are outlined
    corecore