3 research outputs found

    Incorporating unmodeled dynamics into first-principles models through machine learning

    Get PDF
    First-principles modeling of dynamical systems is a cornerstone of science and engineering and has enabled rapid development and improvement of key technologies such as chemical reactors, electrical circuits, and communication networks. In various disciplines, scientists structure the available domain knowledge into a system of differential equations. When designed, calibrated, and validated appropriately, these equations are used to analyze and predict the dynamics of the system. However, perfect knowledge is usually not accessible in real-world problems. The incorporated knowledge thus is a simplification of the real system and is limited by the underlying assumptions. This limits the extent to which the model reflects reality. The resulting lack of predictive power severely hampers the application potential of such models. Here we introduce a framework that incorporates machine learning into existing first-principles modeling. The machine learning model fills in the knowledge gaps of the first-principles model, capturing the unmodeled dynamics and thus improving the representativeness of the model. Moreover, we show that this approach lowers the data requirements, both in quantity and quality, and improves the generalization ability in comparison with a purely data-driven approach. This approach can be applied to any first-principles model with sufficient data available and has tremendous potential in many fields

    Algebraic analysis of the computation in the Belousov-Zhabotinksy reaction

    Get PDF
    We analyse two very simple Petri nets inspired by the Oregonator model of the Belousov-Zhabotinsky reaction using our stochastic Petri net simulator. We then perform the Krohn-Rhodes holonomy decomposition of the automata derived from the Petri nets. The simplest case shows that the automaton can be expressed as a cascade of permutation-reset cyclic groups, with only 2 out of the 12 levels having only trivial permutations. The second case leads to a 35-level decomposition with 5 different simple non-abelian groups (SNAGs), the largest of which is A 9. Although the precise computational significance of these algebraic structures is not clear, the results suggest a correspondence between simple oscillations and cyclic groups, and the presence of SNAGs indicates that even extremely simple chemical systems may contain functionally complete algebras

    Model-Based External Forcing of Nonlinear Dynamics in Chemical and Biochemical Reaction Systems via Optimal Control

    Get PDF
    Ein ausf¨uhrliches, quantitatives Verständnis, welches durch Modellieren erzielt wird, sowie das Ermöglichen einer spezifischen externen Steuerung des zellularen Verhaltens sind allgemeine langfristige Ziele der modernen biowissenschaftlichen Forschung in der Systembiologie. Selbstorganisation ist möglicherweise ein allgemein gültiges Prinzip für die zelluläre Organisation, da viele dynamische Eigenschaften zellulärer Strukturen sowohl hinsichtlich ihrer Bildung, Aufrechterhaltung und Funktion diesem folgen. Die Steuerung selbstorganisierter Dynamiken eröffnet einen Weg zur Untersuchung von dynamischem Verhalten sowie zur Generierung des gewünschten Verhaltens. Um dieses Ziel zu verwirklichen, konzentriert sich diese Dissertation in erster Linie auf die gezielt orientierte Beeinflussung dieser Systeme durch optimale Steuerungsmethoden. Der Ansatz optimaler Steuerung bietet große Flexibilität hinsichtlich der Bestimmung der Zielfunktionen. Wir verwenden eine direkte, auf den Multiple-Shooting-Ansatz basierende numerische Optimiermethode, welche insbesondere auf nichtlineare selbstorganisierende Systeme verwendbar ist. Die vorliegende Arbeit zeigt, wie auf Modellen basierende optimale Steuerungsmethoden zum Erzeugen der gewünschten Systemdynamiken verwertet werden können. Im Fall des Circadischen Rhythmus und der Belousov-Zhabotinsky (BZ) Reaktion als Modellsysteme sind diese bezüglich der zeitabhängigen Steuerungsparameter nicht systemimmanent. Wir analysieren ein Circadisches Oszillatormodell des zentralen Uhrmechanismus für die Fruchtfliege Drosophila und zeigen, wie auf Modellen basierende optimale Steuerung, Phasenneueinstellung, Design von chronomodulierten Puls-Stimuli-Schemata zur Wiederherstellung des Circadischen Rhythmus in den Mutanten und optimale Phasensynchronisierung zwischen der Uhr und ihrer Umgebung erlaubt. Wir beziehen uns sowohl auf die optimalen Open-Loop- als auch auf die Rückkopplungssteuerungsmethoden. Circadische Rhythmen können das Timing und den Eintritt des Zellzyklus erheblich beeinflussen. Zur Untersuchung der auf Modellen basierenden optimalen Steuerungsszenarios sind ein detaillert gekoppelter Circadischer Zyklus und das Zellzyklusmodell f¨ur ein Säugetiersystem entwickelt worden. Erstergebnisse der numerischen Simulationen für den gekoppelten Circadischen Zyklus und das Zellzyklusmodell werden gezeigt. Insbesondere leicht zugängliche chemische Testrohrsysteme wie die BZ Reaktion sind für Untersuchungen der Steuerung selbstorganisierter Dynamiken sehr gut geeignet. Denn sie bieten ein Mittel für die Charkterisierung des Verhaltens, das für kompliziertere biologische Systeme relevant ist. Wir entwickeln ein ganz neuartiges detaillertes Modell für die lichtempfindliche BZ Reaktion, das auf einem Elementarreaktionsmechanismus beruht und reduzieren dieses aufgrund der Quasi-Steady-State- (QSSA) und partielle Gleichgewichtsnäherungen (PEA) explizit. Zur Stabilisierung instabiler stationärer Zustände sind systematische Analysen und auf Modellen basierende Steuerungen durchgeführt worden, woraus periodische Bahnen mit einer gewünschten Periode resultieren. Die Ergebnisse werden diskutiert und mit einem sehr einfachen 3-Variablen-Oregonator-Modell aus der Literatur verglichen
    corecore