4,623 research outputs found

    Quantum mechanics as a theory of probability

    Get PDF
    We develop and defend the thesis that the Hilbert space formalism of quantum mechanics is a new theory of probability. The theory, like its classical counterpart, consists of an algebra of events, and the probability measures defined on it. The construction proceeds in the following steps: (a) Axioms for the algebra of events are introduced following Birkhoff and von Neumann. All axioms, except the one that expresses the uncertainty principle, are shared with the classical event space. The only models for the set of axioms are lattices of subspaces of inner product spaces over a field K. (b) Another axiom due to Soler forces K to be the field of real, or complex numbers, or the quaternions. We suggest a probabilistic reading of Soler's axiom. (c) Gleason's theorem fully characterizes the probability measures on the algebra of events, so that Born's rule is derived. (d) Gleason's theorem is equivalent to the existence of a certain finite set of rays, with a particular orthogonality graph (Wondergraph). Consequently, all aspects of quantum probability can be derived from rational probability assignments to finite "quantum gambles". We apply the approach to the analysis of entanglement, Bell inequalities, and the quantum theory of macroscopic objects. We also discuss the relation of the present approach to quantum logic, realism and truth, and the measurement problem.Comment: 37 pages, 3 figures. Forthcoming in a Festschrift for Jeffrey Bub, ed. W. Demopoulos and the author, Springer (Kluwer): University of Western Ontario Series in Philosophy of Scienc

    The indexed time table approach for planning and acting

    Get PDF
    A representation is discussed of symbolic temporal relations, called IxTeT, that is both powerful enough at the reasoning level for tasks such as plan generation, refinement and modification, and efficient enough for dealing with real time constraints in action monitoring and reactive planning. Such representation for dealing with time is needed in a teleoperated space robot. After a brief survey of known approaches, the proposed representation shows its computational efficiency for managing a large data base of temporal relations. Reactive planning with IxTeT is described and exemplified through the problem of mission planning and modification for a simple surveying satellite

    Nonabelian Duality and Solvable Large N Lattice Systems

    Get PDF
    We introduce the basics of the nonabelian duality transformation of SU(N) or U(N) vector-field models defined on a lattice. The dual degrees of freedom are certain species of the integer-valued fields complemented by the symmetric groups' \otimes_{n} S(n) variables. While the former parametrize relevant irreducible representations, the latter play the role of the Lagrange multipliers facilitating the fusion rules involved. As an application, I construct a novel solvable family of SU(N) D-matrix systems graded by the rank 1\leq{k}\leq{(D-1)} of the manifest [U(N)]^{\oplus k} conjugation-symmetry. Their large N solvability is due to a hidden invariance (explicit in the dual formulation) which allows for a mapping onto the recently proposed eigenvalue-models \cite{Dub1} with the largest k=D symmetry. Extending \cite{Dub1}, we reconstruct a D-dimensional gauge theory with the large N free energy given (modulo the volume factor) by the free energy of a given proposed 1\leq{k}\leq{(D-1)} D-matrix system. It is emphasized that the developed formalism provides with the basis for higher-dimensional generalizations of the Gross-Taylor stringy representation of strongly coupled 2d gauge theories.Comment: TeX, 46 page

    Effects and Propositions

    Full text link
    The quantum logical and quantum information-theoretic traditions have exerted an especially powerful influence on Bub's thinking about the conceptual foundations of quantum mechanics. This paper discusses both the quantum logical and information-theoretic traditions from the point of view of their representational frameworks. I argue that it is at this level, at the level of its framework, that the quantum logical tradition has retained its centrality to Bub's thought. It is further argued that there is implicit in the quantum information-theoretic tradition a set of ideas that mark a genuinely new alternative to the framework of quantum logic. These ideas are of considerable interest for the philosophy of quantum mechanics, a claim which I defend with an extended discussion of their application to our understanding of the philosophical significance of the no hidden variable theorem of Kochen and Specker.Comment: Presented to the 2007 conference, New Directions in the Foundations of Physic

    An algorithmic proof for the completeness of two-dimensional Ising model

    Full text link
    We show that the two dimensional Ising model is complete, in the sense that the partition function of any lattice model on any graph is equal to the partition function of the 2D Ising model with complex coupling. The latter model has all its spin-spin coupling equal to i\pi/4 and all the parameters of the original model are contained in the local magnetic fields of the Ising model. This result has already been derived by using techniques from quantum information theory and by exploiting the universality of cluster states. Here we do not use the quantum formalism and hence make the completeness result accessible to a wide audience. Furthermore our method has the advantage of being algorithmic in nature so that by following a set of simple graphical transformations, one is able to transform any discrete lattice model to an Ising model defined on a (polynomially) larger 2D lattice.Comment: 18 pages, 15 figures, Accepted for publication in Physical Review
    corecore