6 research outputs found

    PERCLOS: An Alertness Measure of the Past

    Get PDF
    The growing number of fatigue related accidents in recent years has become a serious concern. Accidents caused by fatigue, or more precisely impaired alertness, in transportation and in mining operations involving heavy equipment can lead to substantial damage and loss of life. Preventing such fatigue related accidents is universally desirable, but requires techniques for continuously estimating and predicting the operator’s alertness state. PERCLOS (percentage of eye closure) was introduced as an alertness measure. Some years later, it was claimed to be superior in fatigue detection to any other measure, including the general Eye-Tracking Signal (ETS) and even EEG recordings. This study will show that this is not the case. To put things into the prospective a fair and objective comparison between PERCLOS, the general ETS and EEG/EOG has to be established. To achieve this purpose, a protocol was established to investigate the fatigue detection capabilities of PERCLOS, ETS, and EEG/EOG in a simple two class discrimination analysis using an ensemble of Learning Vector Quantization (LVQ) networks as a classification tool. Karolinska Sleepiness Scale (KSS) and Variation of Lane Deviation (VLD) were used in order to obtain independent class labels, whereas KSS provided subjective alertness labels while VLD provided objective alertness labels. The general ETS and the fused EEG/EOG measures contain substantially greater amounts of fatigue information than the PERCLOS measures alone. These conclusions were found to be valid for all three commercially available infrared video camera systems that were utilized in the study. The data utilized in the discrimination analysis were obtained from 16 young volunteers who participated in overnight experiments in the real car driving simulation lab at the University of Schmalkalden

    Socio-Cognitive and Affective Computing

    Get PDF
    Social cognition focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions. On the other hand, the term cognitive computing is generally used to refer to new hardware and/or software that mimics the functioning of the human brain and helps to improve human decision-making. In this sense, it is a type of computing with the goal of discovering more accurate models of how the human brain/mind senses, reasons, and responds to stimuli. Socio-Cognitive Computing should be understood as a set of theoretical interdisciplinary frameworks, methodologies, methods and hardware/software tools to model how the human brain mediates social interactions. In addition, Affective Computing is the study and development of systems and devices that can recognize, interpret, process, and simulate human affects, a fundamental aspect of socio-cognitive neuroscience. It is an interdisciplinary field spanning computer science, electrical engineering, psychology, and cognitive science. Physiological Computing is a category of technology in which electrophysiological data recorded directly from human activity are used to interface with a computing device. This technology becomes even more relevant when computing can be integrated pervasively in everyday life environments. Thus, Socio-Cognitive and Affective Computing systems should be able to adapt their behavior according to the Physiological Computing paradigm. This book integrates proposals from researchers who use signals from the brain and/or body to infer people's intentions and psychological state in smart computing systems. The design of this kind of systems combines knowledge and methods of ubiquitous and pervasive computing, as well as physiological data measurement and processing, with those of socio-cognitive and affective computing

    Epilepsy

    Get PDF
    With the vision of including authors from different parts of the world, different educational backgrounds, and offering open-access to their published work, InTech proudly presents the latest edited book in epilepsy research, Epilepsy: Histological, electroencephalographic, and psychological aspects. Here are twelve interesting and inspiring chapters dealing with basic molecular and cellular mechanisms underlying epileptic seizures, electroencephalographic findings, and neuropsychological, psychological, and psychiatric aspects of epileptic seizures, but non-epileptic as well

    Development of cognitive workload models to detect driving impairment

    Get PDF
    Tesi redactada en castellàDriving a vehicle is a complex activity exposed to continuous changes such as speed limits and vehicular traffic. Drivers require a high degree of concentration when performing this activity, increasing the amount of mental demand known as cognitive workload, causing vehicular accidents to the minimum negligence. In fact, human error is the leading contributing factor in over 90% of road accidents. In recent years, the subjects' cognitive workload levels while driving a vehicle have been predicted using subjective and vehicle performance tools. Other research has emphasized the use and analysis of physiological information, where electroencephalographic (EEG) signals are the most used to identify cognitive states due to their high precision. Although significant progress has been made in this area, these investigations have been based on traditional techniques or data analysis from a specific source due to the information's complexity. A new trend has been opened in the study of the internal behavior of subjects by implementing machine learning techniques to analyze information from various sources. However, there are still several challenges to face in this new line of research. This doctoral thesis presents a new model to predict the states of low and high cognitive workload of subjects when facing scenarios of driving a vehicle called GALoRSI-SVMRBF (Genetic Algorithms and Logistic Regression for the Structuring of Information-Support Vector Machine with Radial Basis Function Kernel). GALoRSI-SVMRBF is developed using machine learning algorithms based on information from EEG signals. Also, the information collected from NASA-TLX, instant online self-assessment and the error rate measure are implemented in the model. First, GALoRSI-SVMRBF proposes a new method for pattern recognition based on feature selection that combines statistical tests, genetic algorithms, and logistic regression. This method consists mainly of selecting an EEG dataset and exploring the information to identify the key features that recognize cognitive states. The selected data are defined as an index for pattern recognition and used to structure a new dataset capable of optimizing the model's learning and classification process. Second, the methodology and development of a classifier for the prediction model are presented, implementing machine learning algorithms. The classifier is developed mainly in two phases, defined as training and testing. Once the prediction model has been developed, this thesis presents the validation phase of GALoRSI-SVMRBF. The validation consists of evaluating the model's adaptability to new datasets, maintaining a high prediction rate. Finally, an analysis of the performance of GALoRSI-SVMRBF is presented. The objective is to know the model's scope and limitations, evaluating various performance metrics to find the optimal configuration for GALoRSI-SVMRBF. We found that GALoRSI-SVMRBF successfully predicts low and high cognitive workload of subjects while driving a vehicle. In general, it is observed that the model uses the information extracted from multiple EEG signals, reducing the original dataset by more than 50%, maximizing its predictive capacity, achieving a precision rate of >90% in the classification of the information. During this thesis, the experiments showed that obtaining a high percentage of prediction depends on several factors, from applying a useful collection technique data until the last step of the prediction model.La conducción de un vehículo es una actividad compleja que está expuesta a demandas que cambian continuamente por diferentes factores, tales como, el límite de velocidad, obstáculos en la vía, tráfico vehicular, entre otros. Al desempeñar esta actividad, los conductores requieren un alto grado de concentración incrementando la cantidad de demanda mental conocida como carga. En los últimos años, se han propuesto mecanismos para monitorear y/o predecir los niveles de carga cognitiva de los sujetos al conducir un vehículo, centrándose en el uso de herramientas subjetivas y de rendimiento vehicular. Otras investigaciones, han enfatizado en el uso y análisis de la información fisiológica, siendo las señales electroencefalográficas (EEG) las más utilizadas para identificar los estados cognitivos por su alta precisión. A pesar del gran avance realizado, estas investigaciones se han basado en técnicas tradicionales o en el análisis de la información proveniente de fuentes específicas para identificar el estado interno del sujeto, obteniendo modelos sobreentrenados o robustos, incrementando el tiempo de análisis afectando el desempeño del modelo. En esta tesis doctoral se presenta un nuevo modelo para predecir los estados de baja y alta carga cognitiva de los sujetos al enfrentarse a escenarios de la conducción de un vehículo denominado GALoRSI-SVMRBF (Genetic Algorithms and Logistic Regression for the Structuring of Information-Support Vector Machine with Radial Basis Function Kernel). GALoRSI-SVMRBF fue desarrollado utilizando los algoritmos de aprendizaje automático y técnicas estadísticas basado en la información proveniente de las señales EEG. Primero, GALoRSI-SVMRBF crea una base de datos extrayendo las características que serán utilizadas en el modelo a través de técnicas estadísticas. Posteriormente, propone un nuevo método para el reconocimiento de patrones basado en la selección de características que combina pruebas estadísticas, algoritmos genéticos y regresión logística. Este método consiste principalmente en seleccionar un conjunto de datos EEG y explorar la combinación de la información para identificar las características claves que contribuyan al reconocimiento de dos estados cognitivos. Después, la información seleccionada es definida como un índice para el reconocimiento de patrones y utilizada para estructurar un nuevo conjunto de datos que soporta información de uno o múltiples canales para optimizar el proceso de aprendizaje y clasificación del modelo. Por último, es desarrollado el clasificador del modelo de predicciones el cual consiste en dos etapas definidas como entrenamiento y prueba. Nosotros encontramos que GALoRSI-SVMRBF predice de manera exitosa la carga cognitiva baja y alta de los sujetos durante la conducción de un vehículo. En general, se observó que el modelo utiliza la información extraída de una o múltiples señales EEG y logrando una tasa de precisión >90% en la clasificación de la informaciónPostprint (published version

    Alertness Assessment Using Data Fusion and Discrimination Ability of LVQ-Networks

    No full text
    corecore