11,381 research outputs found

    Solution Repair/Recovery in Uncertain Optimization Environment

    Full text link
    Operation management problems (such as Production Planning and Scheduling) are represented and formulated as optimization models. The resolution of such optimization models leads to solutions which have to be operated in an organization. However, the conditions under which the optimal solution is obtained rarely correspond exactly to the conditions under which the solution will be operated in the organization.Therefore, in most practical contexts, the computed optimal solution is not anymore optimal under the conditions in which it is operated. Indeed, it can be "far from optimal" or even not feasible. For different reasons, we hadn't the possibility to completely re-optimize the existing solution or plan. As a consequence, it is necessary to look for "repair solutions", i.e., solutions that have a good behavior with respect to possible scenarios, or with respect to uncertainty of the parameters of the model. To tackle the problem, the computed solution should be such that it is possible to "repair" it through a local re-optimization guided by the user or through a limited change aiming at minimizing the impact of taking into consideration the scenarios

    Path Planning for Cooperative Routing of Air-Ground Vehicles

    Full text link
    We consider a cooperative vehicle routing problem for surveillance and reconnaissance missions with communication constraints between the vehicles. We propose a framework which involves a ground vehicle and an aerial vehicle; the vehicles travel cooperatively satisfying the communication limits, and visit a set of targets. We present a mixed integer linear programming (MILP) formulation and develop a branch-and-cut algorithm to solve the path planning problem for the ground and air vehicles. The effectiveness of the proposed approach is corroborated through extensive computational experiments on several randomly generated instances

    Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks

    Full text link
    Deep neural networks have emerged as a widely used and effective means for tackling complex, real-world problems. However, a major obstacle in applying them to safety-critical systems is the great difficulty in providing formal guarantees about their behavior. We present a novel, scalable, and efficient technique for verifying properties of deep neural networks (or providing counter-examples). The technique is based on the simplex method, extended to handle the non-convex Rectified Linear Unit (ReLU) activation function, which is a crucial ingredient in many modern neural networks. The verification procedure tackles neural networks as a whole, without making any simplifying assumptions. We evaluated our technique on a prototype deep neural network implementation of the next-generation airborne collision avoidance system for unmanned aircraft (ACAS Xu). Results show that our technique can successfully prove properties of networks that are an order of magnitude larger than the largest networks verified using existing methods.Comment: This is the extended version of a paper with the same title that appeared at CAV 201

    Employee substitutability as a tool to improve the robustness in personnel scheduling

    Get PDF

    Dynamic Demand-Capacity Balancing for Air Traffic Management Using Constraint-Based Local Search: First Results

    Full text link
    Using constraint-based local search, we effectively model and efficiently solve the problem of balancing the traffic demands on portions of the European airspace while ensuring that their capacity constraints are satisfied. The traffic demand of a portion of airspace is the hourly number of flights planned to enter it, and its capacity is the upper bound on this number under which air-traffic controllers can work. Currently, the only form of demand-capacity balancing we allow is ground holding, that is the changing of the take-off times of not yet airborne flights. Experiments with projected European flight plans of the year 2030 show that already this first form of demand-capacity balancing is feasible without incurring too much total delay and that it can lead to a significantly better demand-capacity balance
    corecore