11 research outputs found

    Random k-SAT and the Power of Two Choices

    Full text link
    We study an Achlioptas-process version of the random k-SAT process: a bounded number of k-clauses are drawn uniformly at random at each step, and exactly one added to the growing formula according to a particular rule. We prove the existence of a rule that shifts the satisfiability threshold. This extends a well-studied area of probabilistic combinatorics (Achlioptas processes) to random CSP's. In particular, while a rule to delay the 2-SAT threshold was known previously, this is the first proof of a rule to shift the threshold of k-SAT for k >= 3. We then propose a gap decision problem based upon this semi-random model. The aim of the problem is to investigate the hardness of the random k-SAT decision problem, as opposed to the problem of finding an assignment or certificate of unsatisfiability. Finally, we discuss connections to the study of Achlioptas random graph processes.Comment: 13 page

    Convergence of Achlioptas processes via differential equations with unique solutions

    Full text link
    In Achlioptas processes, starting from an empty graph, in each step two potential edges are chosen uniformly at random, and using some rule one of them is selected and added to the evolving graph. The evolution of the rescaled size of the largest component in such variations of the Erd\H{o}s--R\'enyi random graph process has recently received considerable attention, in particular for for Bollob\'as's `product rule'. In this paper we establish the following result for rules such as the product rule: the limit of the rescaled size of the `giant' component exists and is continuous provided that a certain system of differential equations has a unique solution. In fact, our result applies to a very large class of Achlioptas-like processes. Our proof relies on a general idea which relates the evolution of stochastic processes to an associated system of differential equations. Provided that the latter has a unique solution, our approach shows that certain discrete quantities converge (after appropriate rescaling) to this solution.Comment: 18 pages. Revised and expanded versio

    The augmented multiplicative coalescent and critical dynamic random graph models

    Full text link
    Random graph models with limited choice have been studied extensively with the goal of understanding the mechanism of the emergence of the giant component. One of the standard models are the Achlioptas random graph processes on a fixed set of nn vertices. Here at each step, one chooses two edges uniformly at random and then decides which one to add to the existing configuration according to some criterion. An important class of such rules are the bounded-size rules where for a fixed K≥1K\geq 1, all components of size greater than KK are treated equally. While a great deal of work has gone into analyzing the subcritical and supercritical regimes, the nature of the critical scaling window, the size and complexity (deviation from trees) of the components in the critical regime and nature of the merging dynamics has not been well understood. In this work we study such questions for general bounded-size rules. Our first main contribution is the construction of an extension of Aldous's standard multiplicative coalescent process which describes the asymptotic evolution of the vector of sizes and surplus of all components. We show that this process, referred to as the standard augmented multiplicative coalescent (AMC) is `nearly' Feller with a suitable topology on the state space. Our second main result proves the convergence of suitably scaled component size and surplus vector, for any bounded-size rule, to the standard AMC. The key ingredients here are a precise analysis of the asymptotic behavior of various susceptibility functions near criticality and certain bounds from [8], on the size of the largest component in the barely subcritical regime.Comment: 49 page
    corecore