14,891 research outputs found

    Using fuzzy numbers and OWA operators in the weighted average and its application in decision making

    Get PDF
    Se presenta un nuevo método para tratar situaciones de incertidumbre en los que se utiliza el operador OWAWA (media ponderada – media ponderada ordenada). A este operador se le denomina operador OWAWA borroso (FOWAWA). Su principal ventaja se encuentra en la posibilidad de representar la información incierta del problema mediante el uso de números borrosos los cuales permiten una mejor representación de la información ya que consideran el mínimo y el máximo resultado posible y la posibilidad de ocurrencia de los valores internos. Se estudian diferentes propiedades y casos particulares de este nuevo modelo. También se analiza la aplicabilidad de este operador y se desarrolla un ejemplo numérico sobre toma de decisiones en la selección de políticas fiscalesWe present a new approach for dealing with an uncertain environment when using the ordered weighted averaging – weighted averaging (OWAWA) operator. We call it the fuzzy OWAWA (FOWAWA) operator. The main advantage of this new aggregation operator is that it is able to represent the uncertain information with fuzzy numbers. Thus, we are able to give more complete information because we can consider the maximum and the minimum of the problem and the internal information between these two results. We study different properties and different particular cases of this approach. We also analyze the applicability of the new model and we develop a numerical example in a decision making problem about selection of fiscal policies

    Managing Interacting Criteria: Application to Environmental Evaluation Practices

    Get PDF
    The need for organizations to evaluate their environmental practices has been recently increasing. This fact has led to the development of many approaches to appraise such practices. In this paper, a novel decision model to evaluate company’s environmental practices is proposed to improve traditional evaluation process in different facets. Firstly, different reviewers’ collectives related to the company’s activity are taken into account in the process to increase company internal efficiency and external legitimacy. Secondly, following the standard ISO 14031, two general categories of environmental performance indicators, management and operational, are considered. Thirdly, since the assumption of independence among environmental indicators is rarely verified in environmental context, an aggregation operator to bear in mind the relationship among such indicators in the evaluation results is proposed. Finally, this new model integrates quantitative and qualitative information with different scales using a multi-granular linguistic model that allows to adapt diverse evaluation scales according to appraisers’ knowledge

    Modelling fraud detection by attack trees and Choquet integral

    Get PDF
    Modelling an attack tree is basically a matter of associating a logical ÒndÓand a logical ÒrÓ but in most of real world applications related to fraud management the Ònd/orÓlogic is not adequate to effectively represent the relationship between a parent node and its children, most of all when information about attributes is associated to the nodes and the main problem to solve is how to promulgate attribute values up the tree through recursive aggregation operations occurring at the Ònd/orÓnodes. OWA-based aggregations have been introduced to generalize ÒndÓand ÒrÓoperators starting from the observation that in between the extremes Òor allÓ(and) and Òor anyÓ(or), terms (quantifiers) like ÒeveralÓ ÒostÓ ÒewÓ ÒomeÓ etc. can be introduced to represent the different weights associated to the nodes in the aggregation. The aggregation process taking place at an OWA node depends on the ordered position of the child nodes but it doesnÕ take care of the possible interactions between the nodes. In this paper, we propose to overcome this drawback introducing the Choquet integral whose distinguished feature is to be able to take into account the interaction between nodes. At first, the attack tree is valuated recursively through a bottom-up algorithm whose complexity is linear versus the number of nodes and exponential for every node. Then, the algorithm is extended assuming that the attribute values in the leaves are unimodal LR fuzzy numbers and the calculation of Choquet integral is carried out using the alpha-cuts.Fraud detection; attack tree; ordered weighted averaging (OWA) operator; Choquet integral; fuzzy numbers.

    "The connection between distortion risk measures and ordered weighted averaging operators"

    Get PDF
    Distortion risk measures summarize the risk of a loss distribution by means of a single value. In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a single value. We show that these concepts can be derived from the Choquet integral, and then the mathematical relationship between distortion risk measures and the OWA and WOWA operators for discrete and nite random variables is presented. This connection oers a new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail Value-at-Risk can be understood from an aggregation operator perspective. The theoretical results are illustrated in an example and the degree of orness concept is discussed.Fuzzy systems; Degree of orness; Risk quantification; Discrete random variable JEL classification:C02,C60

    Enabling Explainable Fusion in Deep Learning with Fuzzy Integral Neural Networks

    Full text link
    Information fusion is an essential part of numerous engineering systems and biological functions, e.g., human cognition. Fusion occurs at many levels, ranging from the low-level combination of signals to the high-level aggregation of heterogeneous decision-making processes. While the last decade has witnessed an explosion of research in deep learning, fusion in neural networks has not observed the same revolution. Specifically, most neural fusion approaches are ad hoc, are not understood, are distributed versus localized, and/or explainability is low (if present at all). Herein, we prove that the fuzzy Choquet integral (ChI), a powerful nonlinear aggregation function, can be represented as a multi-layer network, referred to hereafter as ChIMP. We also put forth an improved ChIMP (iChIMP) that leads to a stochastic gradient descent-based optimization in light of the exponential number of ChI inequality constraints. An additional benefit of ChIMP/iChIMP is that it enables eXplainable AI (XAI). Synthetic validation experiments are provided and iChIMP is applied to the fusion of a set of heterogeneous architecture deep models in remote sensing. We show an improvement in model accuracy and our previously established XAI indices shed light on the quality of our data, model, and its decisions.Comment: IEEE Transactions on Fuzzy System
    • …
    corecore