6,618 research outputs found

    Cognitive radio-enabled Internet of Vehicles (IoVs): a cooperative spectrum sensing and allocation for vehicular communication

    Get PDF
    Internet of Things (IoTs) era is expected to empower all aspects of Intelligent Transportation System (ITS) to improve transport safety and reduce road accidents. US Federal Communication Commission (FCC) officially allocated 75MHz spectrum in the 5.9GHz band to support vehicular communication which many studies have found insufficient. In this paper, we studied the application of Cognitive Radio (CR) technology to IoVs in order to increase the spectrum resource opportunities available for vehicular communication, especially when the officially allocated 75MHz spectrum in 5.9GHz band is not enough due to high demands as a result of increasing number of connected vehicles as already foreseen in the near era of IoTs. We proposed a novel CR Assisted Vehicular NETwork (CRAVNET) framework which empowers CR enabled vehicles to make opportunistic usage of licensed spectrum bands on the highways. We also developed a novel co-operative three-state spectrum sensing and allocation model which makes CR vehicular secondary units (SUs) aware of additional spectrum resources opportunities on their current and future positions and applies optimal sensing node allocation algorithm to guarantee timely acquisition of the available channels within a limited sensing time. The results of the theoretical analyses and simulation experiments have demonstrated that the proposed model can significantly improve the performance of a cooperative spectrum sensing and provide vehicles with additional spectrum opportunities without harmful interference against the Primary Users (PUs) activities

    Energy Aware Multipath Routing Protocol for Cognitive Radio Ad Hoc Networks

    Get PDF
    Cognitive radio networks (CRNs) emerged as a paradigm to solve the problem of limited spectrum availability and the spectrum underutilization in wireless networks by opportunistically exploiting portions of the spectrum temporarily vacated by licensed primary users (PUs). Routing in CRNs is a challenging problem due to the PU activities and mobility. On the other hand, energy aware routing is very important in energy-constraint CRNs. In addition, it is crucial that CR users efficiently exchange data with each other before the appearance of PUs. To design a robust routing scheme for mobile CR ad hoc networks (CRANs), the constraints on residual energy of each CR user, reliability, and the protection of PUs must additionally be taken into account. Moreover, multipath routing has great potential for improving the end-to-end performance of ad hoc networks. Considering all these evidences, in this paper, we propose an energy aware on-demand multipath routing (EOMR) protocol for mobile CRANs to ensure the robustness and to improve the throughput. The proposed routing scheme involves energy efficient multipath route selection and spectrum allocation jointly. The simulation results show that our approach improves the overall performance of the network

    Formulation, implementation considerations, and first performance evaluation of algorithmic solutions - D4.1

    Get PDF
    Deliverable D4.1 del projecte Europeu OneFIT (ICT-2009-257385)This deliverable contains a first version of the algorithmic solutions for enabling opportunistic networks. The presented algorithms cover the full range of identified management tasks: suitability, creation, QoS control, reconfiguration and forced terminations. Preliminary evaluations complement the proposed algorithms. Implementation considerations towards the practicality of the considered algorithms are also included.Preprin

    Hybrid Spectrum Sharing in mmWave Cellular Networks

    Full text link
    While spectrum at millimeter wave (mmWave) frequencies is less scarce than at traditional frequencies below 6 GHz, still it is not unlimited, in particular if we consider the requirements from other services using the same band and the need to license mmWave bands to multiple mobile operators. Therefore, an efficient spectrum access scheme is critical to harvest the maximum benefit from emerging mmWave technologies. In this paper, we introduce a new hybrid spectrum access scheme for mmWave networks, where data is aggregated through two mmWave carriers with different characteristics. In particular, we consider the case of a hybrid spectrum scheme between a mmWave band with exclusive access and a mmWave band where spectrum is pooled between multiple operators. To the best of our knowledge, this is the first study proposing hybrid spectrum access for mmWave networks and providing a quantitative assessment of its benefits. Our results show that this approach provides major advantages with respect to traditional fully licensed or fully unlicensed spectrum access schemes, though further work is needed to achieve a more complete understanding of both technical and non technical implications

    Spectrum Assignment in Hardware-Constrained Cognitive Radio IoT Networks Under Varying Channel-Quality Conditions

    Full text link
    [EN] The integration of cognitive radio (CR) technology with the future Internet-of-Things (IoT) architecture is expected to allow effective massive IoT deployment by providing huge spectrum opportunities to the IoT devices. Several communication protocols have been proposed for the CR networks while ignoring the adjacent channel interference (ACI) problem by assuming sharp filters at the transmit and receive chains of each CR device. However, in practice, such an assumption is not feasible for low-cost hardware-constrained CR-capable IoT (CR-IoT) devices. Specifically, when a large number of CR-IoT devices are operating in the same vicinity, guard-band channels (GBs) are needed to mitigate the ACI problem, introducing GB adds constraints on the efficient use of spectrum and protocol design. In this paper, we develop a channel assignment mechanism for the hardware-constrained CR-IoT networks under time-varying channel conditions with GB-awareness. The objective of our assignment is to serve the largest possible number of CR-IoT devices by assigning the least number of idle channels to each device subject to rate demand and interference constraints. The proposed channel assignment in this paper is conducted on a per-block basis for the contending CR-IoT devices while considering the time-varying channel conditions for each CRIoT transmission over each idle channel, such that spectrum efficiency is improved. Specifically, our channel assignment problem is formulated as a binary linear programming problem, which is NP-hard. Thus, we propose a polynomial-time solution using a sequential fixing algorithm that achieves a suboptimal solution. The simulation results demonstrate that our proposed assignment provides significant increase in the number of served IoT devices over existing assignment mechanisms.This work was supported in part by the QR Global Challenges Research Fund, Staffordshire University, Staffordshire, U.K.Salameh, HAB.; Al-Masri, S.; Benkhelifa, E.; Lloret, J. (2019). Spectrum Assignment in Hardware-Constrained Cognitive Radio IoT Networks Under Varying Channel-Quality Conditions. IEEE Access. 7:42816-42825. https://doi.org/10.1109/ACCESS.2019.2901902S4281642825
    • …
    corecore