818 research outputs found

    Interference Distribution for Directional Beamforming Mobile Networks

    Get PDF
    Publisher Copyright: © 2013 IEEE.In this paper, we model the aggregate interference power in directional beamforming mobile networks. The work considers the random waypoint model to describe the mobility of the nodes and adopts directional beamforming for communication. The major contribution of this paper is the statistical characterization of the aggregate interference caused by directional beamforming transmissions of mobile interferers to a given node positioned at a reference point. The analysis assumes Rayleigh and Rician small-scale fading channels, a distance-based path-loss large-scale fading model, and a three gain levels sectored antenna model. The quality of the proposed approximations has been confirmed through various simulations for different mobility scenarios, channel conditions, and beamforming parameters, highlighting the effect of directional communications along with mobility on aggregate interference. To demonstrate the practical application of the work, we use two different estimators for the interference characterization. The results confirm the effectiveness of the estimators even when adopting a small set of samples.publishersversionpublishe

    Optimal Non-uniform Deployments in Ultra-Dense Finite-Area Cellular Networks

    Get PDF
    Network densification and heterogenisation through the deployment of small cellular access points (picocells and femtocells) are seen as key mechanisms in handling the exponential increase in cellular data traffic. Modelling such networks by leveraging tools from Stochastic Geometry has proven particularly useful in understanding the fundamental limits imposed on network coverage and capacity by co-channel interference. Most of these works however assume infinite sized and uniformly distributed networks on the Euclidean plane. In contrast, we study finite sized non-uniformly distributed networks, and find the optimal non-uniform distribution of access points which maximises network coverage for a given non-uniform distribution of mobile users, and vice versa.Comment: 4 Pages, 6 Figures, Letter for IEEE Wireless Communication

    Spatial networks with wireless applications

    Get PDF
    Many networks have nodes located in physical space, with links more common between closely spaced pairs of nodes. For example, the nodes could be wireless devices and links communication channels in a wireless mesh network. We describe recent work involving such networks, considering effects due to the geometry (convex,non-convex, and fractal), node distribution, distance-dependent link probability, mobility, directivity and interference.Comment: Review article- an amended version with a new title from the origina

    Reducing Congestion Effects by Multipath Routing in Wireless Networks

    Get PDF
    We propose a solution to improve fairness and increasethroughput in wireless networks with location information.Our approach consists of a multipath routing protocol, BiasedGeographical Routing (BGR), and two congestion controlalgorithms, In-Network Packet Scatter (IPS) and End-to-EndPacket Scatter (EPS), which leverage BGR to avoid the congestedareas of the network. BGR achieves good performancewhile incurring a communication overhead of just 1 byte perdata packet, and has a computational complexity similar togreedy geographic routing. IPS alleviates transient congestion bysplitting traffic immediately before the congested areas. In contrast,EPS alleviates long term congestion by splitting the flow atthe source, and performing rate control. EPS selects the pathsdynamically, and uses a less aggressive congestion controlmechanism on non-greedy paths to improve energy efficiency.Simulation and experimental results show that our solutionachieves its objectives. Extensive ns-2 simulations show that oursolution improves both fairness and throughput as compared tosingle path greedy routing. Our solution reduces the variance ofthroughput across all flows by 35%, reduction which is mainlyachieved by increasing throughput of long-range flows witharound 70%. Furthermore, overall network throughput increasesby approximately 10%. Experimental results on a 50-node testbed are consistent with our simulation results, suggestingthat BGR is effective in practice

    Effect of user mobility and channel fading on the outage performance of UAV communications

    Get PDF
    Many wireless networks operate in a mobile environment with randomly moving user terminals. This letter analytically characterizes the impact of ground user mobility, propagation environment and channel fading on the outage performance of unmanned aerial vehicle (UAV) communications. Closed-form expressions for the outage probability using the random waypoint model for ground user mobility, UAV channel models for different propagation environments and the Nakagamim model for fading channels are derived. Furthermore, the outage analysis takes into account the effect of co-channel interference by both the stationary and mobile users. Numerical results are presented to demonstrate the interplay between the communication performance and the system parameters

    An efficient hybrid model and dynamic performance analysis for multihop wireless networks

    Get PDF
    Multihop wireless networks can be subjected to nonstationary phenomena due to a dynamic network topology and time varying traffic. However, the simulation techniques used to study multihop wireless networks focus on the steady-state performance even though transient or nonstationary periods will often occur. Moreover, the majority of the simulators suffer from poor scalability. In this paper, we develop an efficient performance modeling technique for analyzing the time varying queueing behavior of multihop wireless networks. The one-hop packet transmission (service) time is assumed to be deterministic, which could be achieved by contention-free transmission, or approximated in sparse or lightly loaded multihop wireless networks. Our model is a hybrid of time varying adjacency matrix and fluid flow based differential equations, which represent dynamic topology changes and nonstationary network queues, respectively. Numerical experiments show that the hybrid fluid based model can provide reasonably accurate results much more efficiently than standard simulators. Also an example application of the modeling technique is given showing the nonstationary network performance as a function of node mobility, traffic load and wireless link quality. © 2013 IEEE
    corecore