
Reducing Congestion Effects in Wireless

Networks by Multipath Routing
Lucian Popal, Costin Raiciu2, Ion Stoica', David S. Rosenblum2
nputer Science 2Department of Computer Science
fornia, Berkeley University College London
s.berkeley.edu {c.raiciu, d.rosenblum} @cs.ucl.ac.uk

Abstract-We propose a solution to improve fairness and in-
crease throughput in wireless networks with location informa-
tion. Our approach consists of a multipath routing protocol, Bi-
ased Geographical Routing (BGR), and two congestion control
algorithms, In-Network Packet Scatter (IPS) and End-to-End
Packet Scatter (EPS), which leverage BGR to avoid the con-

gested areas of the network. BGR achieves good performance
while incurring a communication overhead of just 1 byte per

data packet, and has a computational complexity similar to
greedy geographic routing. IPS alleviates transient congestion by
splitting traffic immediately before the congested areas. In con-

trast, EPS alleviates long term congestion by splitting the flow at
the source, and performing rate control. EPS selects the paths
dynamically, and uses a less aggressive congestion control
mechanism on non-greedy paths to improve energy efficiency.

Simulation and experimental results show that our solution
achieves its objectives. Extensive ns-2 simulations show that our

solution improves both fairness and throughput as compared to
single path greedy routing. Our solution reduces the variance of
throughput across all flows by 35%, reduction which is mainly
achieved by increasing throughput of long-range flows with
around 70%. Furthermore, overall network throughput in-
creases by approximately 10%. Experimental results on a 50-
node testbed are consistent with our simulation results, suggest-
ing that BGR is effective in practice.

I. INTRODUCTION

Wireless embedded processors contained in mobile phones,
handheld devices or weaved into the environment as sensors,

are likely to become the main part of the future Internet [9].
Furthermore, it is expected that location information will be
widely available for such processing, to enhance context-aware
types of interactions [9].

The prospect of having ad-hoc wireless networks com-

posed of numerous location-aware nodes spread in the sur-

rounding environment (such as SmartDust [1]) poses new in-
teresting challenges to the research community. Congestion in
wireless networks has already been explored by other research,
observing its impact on performance: a drastic decrease in
throughput [28] and increased per-packet energy consumption
[11]. On the other hand, computing is moving to an era where
applications require large and stable bandwidths to perform
their tasks. Such applications include multimedia applications,
high frequency sensing applications, file transfer, and so forth.
If devices enabling these applications are going to become an

integral part of tomorrow's networks, solutions to reduce the
effects of congestion in wireless networks are required.

A promising approach for routing in such networks is geo-

graphical routing, an algorithm that leverages location infor-
mation to route messages in a hop-by-hop, greedy manner.

Assuming that a coordinate system is in place (either GPS or

other coordinate systems, such as NoGeo [2], BVR [4] or [3]),
this scheme is scalable, has low computational overhead and
requires minimum routing information to be maintained by
nodes.

However, shortest path routing schemes in general, and
geographical routing in particular, amplify the effects of con-

gestion: in a random communication pattern, the nodes in the
center of the network carry a disproportionately large amount
of the entire traffic, drastically decreasing the throughput of
the flows they forward. This affects most long-range flows, as

they have a higher probability of intersecting the central hot-
spot.

In this paper, we present a solution that seeks to utilize idle
or under-loaded nodes to reduce the effects of congestion. To
achieve this goal, we enhance geographic routing to allow a

source to select different paths towards the destination. While
multi-path solutions for geographic routing have been pro-

posed before, they have either limited effectiveness (e.g., way-
point routing), or they exhibit a high overhead (e.g., TBF [5]).
At this end, we propose Biased Geographical Routing (BGR),
a lightweight, stateless, geographical forwarding algorithm, as

a cost-effective complement to greedy routing. BGR routes
packets on curved trajectories, by forwarding packets along
curves, instead of along the shortest path, towards the destina-
tion.

To further mitigate congestion, we design two congestion
control mechanisms that leverage BGR:
* In-Network Packet Scatter (IPS) is a lightweight mechanism

that aims to relieve transient congestion by locally splitting
the traffic along multiple paths to avoid congested hotspots.

* End-to-End Packet Scatter (EPS) is an end-to-end mecha-
nism that aims to alleviate longer term congestion, when IPS
fails. EPS works by splitting the flow at the source, and per-

forming independent rate control along each path in re-

sponse to congestion.
We have evaluated the performance of BGR by using a

high-level simulator, a packet-level simulator (ns2 [6]), and a

testbed comprising 90 nodes [21]. The results show that BGR
is a practical and efficient multipath routing algorithm. We
have evaluated IPS and EPS using ns2. Simulation results
show that their combined action:
* increases network throughput for long flows with around

70°0 when compared to greedy routing,
* increases fairness by reducing the dependence of flow
throughput on the distance between the endpoints, and

* increases overall network throughput by around 10%.
In addition, we have evaluated the potential of multipath

routing to increase the network throughput on the Mirage test-
bed [21]. Experimental results are consistent with the simula-
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tion results, showing that multipath routing is a viable solution
for increasing throughput.

This paper is structured as follows. Section II presents the
BGR algorithm and a high-level simulation analysis of its per-
formance. In Section III, we show how multipath routing using
BGR can be used to increase throughput and fairness among
flows with different lengths. In Section IV, we evaluate IPS
and EPS through ns2 simulation. Section V discusses the de-
ployment of BGR in TinyOS and the results obtained from a
testbed deployment. Section VI provides an overview of re-
lated work. Finally, conclusions and future directions are dis-
cussed in Section VII.

II. BIASED GEOGRAPHICAL ROUTING (BGR)
In this section, we describe the requirements of our solu-

tion and the details of the BGR algorithm. In addition, we pre-
sent simulation results that show that BGR achieves good per-
formance with a low overhead.

A. Design goals
We design our solution to work in any wireless network

with coordinate based routing. To accommodate sensor net-
works, we require our solution to work under stringent energy
and computational constraints, which characterize these net-
works.

Next, we summarize the requirements of the geographic
routing protocol to be used by our solution:
* Low communication overhead - typically, packets sent by

the sensor nodes are very small (e.g., in TinyOS the maxi-
mum packet size is 29 bytes), emphasizing the requirement
for low communication overhead.

* Simplicity - the routing algorithm must have low computa-
tional overhead - to allow timely execution on slow proces-
sors and to minimize energy usage - and low memory foot-
print to fit into memory (e.g., the micaz mote has only 4 kB
ofRAM).

* Low state - nodes must maintain a minimal amount of state,
to allow the network to scale up to a large number of devices
(i.e. no per-flow or per-path state in network)
In addition, to effectively avoid the hotspots in the net-

work, the multi-path algorithm should be able to provide a
large number of paths with few common hops (this will be
referred to as path overlap) without increasing routing failures,
as compared to the single-path greedy routing.

B. BGR Description
The main idea behind our solution is to insert a "bias" in

each packet, which determines the curvature of the path fol-
lowed by the packet towards the destination. The bias is a
measure of how far the trajectory will deviate from the greedy
route and also indicates the side of the deviation. In our im-
plementation, the bias is treated at each hop as an angle. In-
stead of routing greedily towards the destination D, BGR
routes greedily towards the point N2 (target point) situated at a
predefined distance from the current node N1 such that the
angle between the lines N1N2 and N1D is equal to the bias. In
this way, initially, packets with different biases are scattered
on different trajectories and later start getting closer and closer
to the destination.

To avoid spiral trajectories, we decrease the modulus of the
bias at each hop with a value inversely proportional to the
square of the distance to the destination from the current node
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Figure 1. BGR Forwarding Figure 2. BGR in the simulator

(we borrowed the idea from physics as a parallel to natural
forces like gravity): bias = bias - K/a. When the modulus of
the bias reaches 0, the bias is not modified any longer, to avoid
"missing" the destination; from this point on, the packet is
routed greedily towards the destination. The proportionality
parameter K depends on the size of the network, the average
number of neighbors and the radio range of the nodes. How-
ever, the algorithm is quite resilient to this parameter: in our
tests, we achieved similar results for a large range of values
(see subsection F).

Fig. 1 illustrates the BGR forwarding process. Node 1
holds a packet with bias value bias that it must route towards
the destination, node 4. Node 1 selects target point A on the
biased line at a predefined distance (usually the maximum ra-
dio distance) and selects the next hop for the packet to be one
of its neighbors that is closest to A, in this case node 2. Before
forwarding the packet to node 2, node 1 decreases the initial
bias value to bias' and sends the packet to node 2. In turn,
node 2 will select node 3 as the next hop and further decrease
the bias. This process continues until the packet reaches the
destination or the packet is dropped, if no neighbor is closer to
the target point than the current node.

Fig. 2 shows a sample trace of the protocol in our high
level Java simulator. In the simulation, a single source sends
packets with different biases towards the same destination. The
bold lines represent the paths of the packets, while gray lines
represent links between neighboring nodes.

C. Properties ofBGR and other considerations
BGR is both simple and has low overhead. The computa-

tional overhead is close to greedy routing. BGR adds two sim-
ple operations to greedy routing: (1) plot the virtual destination
point, and (2) decrease the bias, both of which are independent
of the number of neighbors of a node. The communication
overhead consists of adding the bias to the packet header. The
bias can be encoded in as little as one byte. One byte allows an
integer representation of the angle between -1270 and 1270,
which in our experience is enough in practice.

The setup cost and memory usage of the protocol are the
same as that of greedy routing, since all the protocol requires is
knowledge of neighbors and their locations.

Next, we give a simple convergence property ofBGR.

Convergence Property. BGR avoids infinite loops.

Proof If K>O, the bias will eventually reach zero since at each
step it is decreased with a positive value A, where A>KD2, D
being the diameter of the network. Thus, BGR does not degen-
erate in routing loops.

If we only use integer values for bias, we need to make
sure that the bias is decreased at all steps by at least 1. In the
most general case we need to set K > D2 to ensure that BGR
converges. .
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Figure 3. Path distinctiveness and cost

A particular case that appears often in practice is when
hbiasl< z/2. In this case, BGR converges for much smaller
values ofK Actually, BGR converges even for K=O by form-
ing spiral trajectories, if we assume perfect next hop selection
(i.e., at each hop, BGR's target point always coincides with
one of its neighbors' position). In practice, for non-
pathological cases (e.g. a circle of close-by nodes of diameter
D and the destination node in the center), BGR converges re-
gardless of the value of K.

Fallback Mode. A usual approach in geographic routing proto-
cols is to enter a fallback mode when greedy forwarding is
impossible (see GPSR [15], CLDP[16]). This solution is or-
thogonal to our algorithm; BGR can adopt the same policy by
preserving or resetting the bias upon recovery from fallback
mode. Our current implementation does not support fallback
mode, for two reasons: first, we wanted to prevent any particu-
lar algorithm from influencing our comparisons; and second,
we focused on dense networks, where greedy routing alone
achieves high availability.

Coordinate Systems. BGR requires coordinate information to
function properly, and GPS should be used when available.
However, the algorithm also works on virtual coordinate sys-
tems with Cartesian properties, such as No-GEO [2] or DV-
hop[3]. Tests we performed using the No-GEO coordinate
system showed that, without any modifications, BGR func-
tioned properly.

BGR also requires a location service that allows a node to
find the location of another node, given a node identifier. Any
of the location services proposed in the literature can be used,
for instance the Grid Location Service [26].

Other choices. We have considered other routing schemes
before settling for BGR. In one scheme, the packet is assimi-
lated to a particle that has an initial speed and is attracted to-
wards the destination. Another approach was to plot all nodes
on a sphere with the poles in the two communication endpoints
and route packets on longitudes. Simulation results showed
that these approaches have higher overhead and worse per-
formance (i.e.higher path overlap) when compared to BGR.

D. Applications ofBGR
BGR's requirements target sensor networks as these repre-

sent the most resource-scarce wireless environments; we stress
that BGR's use is not limited to sensor networks, the algorithm
being applicable to any wireless network.

The list of possible applications for BGR includes multi-
path routing and all its possible uses. Multipath routing can be
easily implemented by sending packets with different biases
towards the destination. Energy fairness can be increased by
sending messages on biased trajectories, to avoid the nodes in
the center of the network. Fault-tolerant routing can be
achieved by replicating packets on different trajectories to-
wards the destination.

For example, mesh networks [24], foreseen as a future way
of providing Internet, could become large enough to benefit
greedy routing. The advantages of multipath routing are im-
mediate: users could use BGR to avoid sending traffic on the
greedy route towards the network uplinks, to avoid congested
or even faulty nodes.

In this paper we only focus on a single application ofBGR,
alleviating congestion in dense wireless networks.

E. BGR Comparative Analysis
We present high-level simulation comparisons of BGR

with our implementations of TBF [5] and waypoint routing.
The purpose of the comparison is to evaluate how BGR's low
overhead affects its performance. We use as performance met-
rics path overlap (measured as the fraction of common hops
shared by different paths) and communication overhead
(measured in bytes).

Simulation Setup. We coded and used a high-level Java simu-
lator that offers scalability, ease of implementation and high
testing speed. In subsequent sections we evaluate BGR using
ns2 and a real deployment.

Tests were run on a network of 3300 nodes randomly
placed in a 500x500m geographic area. The radio range is 20m
resulting in each node having close to 16 neighbors on aver-
age. Given our target metrics, the simplicity of the scenario
does not affect the comparison. Measurements were made for
multiple random deployments and averaged over a few thou-
sand experiments. In our tests, the ratio between the longest
and shortest paths is around 1.4 (the length of a path is its hop
count).

In our implementation, TBF uses circular trajectories. In-
stead of embedding the parametric equation of the circle in
each packet, we reduce communication overhead by embed-
ding only the coordinates of the center of the circle along with
a bit identifying a "left" or "right" trajectory and the current
and the final steps on the parameterized trajectory. We use for
testing a version of TBF that is several times more computa-
tionally intensive than BGR: at each forwarding hop, TBF
computes on average 9 points on the trajectory and checks
their proximity to the neighbors. We believe this instance of
TBF is representative in terms of performance and overhead
for all TBF variants usable in practice. However, these tests
are by no means exhaustive over all possible instances of the
two algorithms.

Results. Fig. 3 shows a comparison of path overlap for BGR,
TBF and a simple implementation of waypoint routing using a
single routing landmark. BGR's parameter K is set to 500. The
names of the data series include the name of the algorithm and
the per packet communication overhead, in bytes. We consid-
ered locations encoded on four bytes (two for each dimension).
BGR 4 encodes the bias as a float (4 bytes); BGR 1 encodes
the bias (in degrees) as a single byte. Implementations were
tuned such that BGR used a lower number of hops overall (on
all paths) as shown in the second chart; this ensured that the
rest of the algorithms used wider paths that are less prone to
overlapping.

The results show that, at similar costs, both instances of
BGR achieve lower path overlap as compared with TBF and
waypoint routing. In theory, TBF can approximate any trajec-
tory (including BGR trajectories) and thus can obtain minimal
path overlap. The main point of the comparison is not that
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BGR performs better but that significant simplifications do not
degrade the desired performance metrics.

F. The influence ofparameter K
BGR has similar behavior for a large range of values for K

and, thus, the method of selecting K (e.g. through sampling)
should not be particularly important. Fig. 4 plots the path over-
lap for different values of the parameter K and different num-
ber of paths used (using the same high level simulator as be-
fore), as well as the average number of hops to estimate costs
particular to multipath routing. As we can see, when K varies
in the range 100 to 800, the variation of path overlap is small -
for instance, the variation for "4 paths" is only 1%. As ex-
pected, when using a lower value for K paths are wider, having
lower overlap. However, longer paths also imply higher costs
and higher probability to encounter voids. Selecting K needs
also to take into account the end-purpose of multipath routing;
for instance, a larger value could be selected ifBGR is used to
avoid local obstacles on the way, such that paths converge
quickly to greedy (we use this approach with IPS). Choosing K
on a per flow basis as a function of the distance between the
endpoints is another possibility that we intend to explore in
future work.

III. MITIGATING CONGESTION IN WIRELESS NETWORKS

Congestion collapse in wireless networks has particulari-
ties such as spatial correlation that cause even idle nodes to
become congested when the wireless area around them is busy.
Unlike the Internet where congestion is mostly situated at the
border of the network, in wireless networks with point-to-point
communication congestion usually builds in the center. Fortu-
nately, the connectivity of most wireless networks is rich
enough to allow routing packets on alternate paths that avoid
the congested areas.

A. Traffic Assumptions
We assume a point-to-point communication pattern with

randomly chosen endpoints where devices operate at a low
duty cycle and become suddenly active in response to context
changes. Examples include the detection of interesting events
in sensor networks or the appearance of information of interest
(e.g., an on-site multimedia service) in a mobile node's vicin-
ity. In such cases, devices send packets at high rates towards
the attraction points scattered throughout the network.

Our traffic model consists of independent packets, where
the benefit of the receiver increases linearly with the number
of packets received, regardless of their ordering. The latter
assumption is important, as our solution changes the ordering
of the packets through multipath routing. File transfer applica-
tions and sensor readings adhere to this model. Reliable deliv-
ery can be implemented were needed, on top of the mecha-
nisms we describe, by using techniques such as forward error
correction and selective acknowledgements.

In our solution, we assume that there are areas close to the
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Figure 5. Increasing throughput with multipath routing

hotspots that are not congested and can be used to reroute the
traffic towards the destination. In our communication model,
traffic is usually generated in bursts coming from isolated
nodes or small areas of the network, and thus, most of the net-
work is not heavily loaded.

B. Solution Outline
The underlying idea of our solution is straightforward.

When a flow experiences congestion, we split its traffic onto
multiple paths, in an attempt to "spread" network load on a
wider area and thus alleviate congestion. In this way, the
newly created flows will carry packets at a slower rate, allow-
ing the hotspot in the network to be relieved. A simple exam-
ple of this approach is presented in Fig. 4(a) where two flows
carrying packets at a high rate (assume the rates equal R) cre-
ate a hotspot around the intersection area (assuming the wire-
less capacity is less than 2R). In Fig. 4(b), the flows are split
into two non-interfering paths; at each intersection area data
will flow at aggregate rate R, alleviating congestion.

The underlying assumption of our proposal is that the inter-
ference among the split paths is negligible; obviously, the
paths will be interfering close to the endpoints, but we require
the flow intersection points don't interfere. This is a reasonable
assumption if we use paths that are split far enough apart and
the distance from the source to the destination is (significantly)
larger than the contention range. To enforce this behavior, we
use a lower bound on the geographical distance between the
endpoints to decide whether a flow should be split.

Our solution has two components, aiming to tackle differ-
ent conditions in the network: in-network packet scatter (IPS)
and end-to-endpacket scatter (EPS). IPS scatters packets close
to congested areas, attempting to deal with transient conges-
tion in a fast way. EPS reroutes the flow starting from the
source along a small number of paths, when detecting conges-
tion, and reduces the sending rate if congestion persists. EPS
aims to deal with persistent congestion and is suited for long-
lived flows. We will now discuss both mechanisms in more
detail.

C. IPS - In-Network Packet Scatter
IPS splits flows close to the congestion point. Each node

monitors the congested status of all its neighbors and splits the
flows that are going towards a congested neighbor, if the node
itself is not congested. The scattered packets contain large bi-
ases, such that the modified trajectories quickly move away
from the original trajectory. However, to counteract the nega-
tive effect of inserting large biases (i.e. creating long paths),
we use a modified version of BGR that has a larger value for
K, ensuring that the bias is quickly decreased and that the
routes do not deviate too much from the greedy route. We used
a value for K that is 100 times larger than our usual K; how-
ever, we obtained similar results for a wide range of values. To
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indicate the use of one of the two values for K we added one
extra bit to each packet.

When forwarding traffic towards a congested neighbor,
packets will be individually scattered with uniform probability
by modifying the bias with one of several preset values (in our
evaluation we use three values -7c/2, 0, TC/2). This simple, uni-
form split contributes to the efficiency of IPS, essentially a
lightweight solution that does not maintain per flow informa-
tion and deals with short-term, transient, congestion. IPS re-
sponds quickly to network conditions and has small energy
consumption (because the multiple paths are created closer to
the destination). Moreover, it only requires nodes to maintain
information about the congested state of their neighbors, with-
out maintaining per flow information. The pseudocode for the
IPS algorithm is presented in Fig. 6.

1) Congestion Detection
To detect congestion, we rely heavily on previous work

([1 1], [12]). Our detection mechanism is based on buffer occu-
pancy and wireless usage, exponentially averaged to eliminate
noise. Wireless usage is measured by periodically sampling
wireless medium. We also consider that the medium is busy
when the node's MAC is in backoff mode. In this way, nodes
that are busy (i.e. have packets to forward) will detect wireless
usage accurately.

2) Congestion Signaling
IPS requires constant information exchange with

neighbors, incurring additional overhead. To minimize this
overhead, our implementation is similar to FUSION [12],
where a single bit indicating congestion is added to each
packet and each node promiscuously listens to the packets sent
by its neighbors to detect their congested status.

D. EPS - End-to-End Multipath Packet Scatter
If IPS cannot successfully support the aggregate traffic (i.e.

avoid congestion), it will only scatter packets to a wider area
potentially amplifying the effects of congestion collapse due to
its longer paths (a larger number of contending nodes lead to a
larger probability of loss). In such cases a closed loop mecha-
nism is required to regulate the source rates. EPS is applied at
the endpoints of the flows, and regulates the number of paths
the flow is scattered on and the rate corresponding to each
path. The source requires constant feedback from the destina-
tion regarding network conditions, making this mechanism
more expensive than its local counterpart.

The idea behind EPS is to dynamically search and use free
resources available in the network in order to avoid conges-
tion. When the greedy path becomes congested, EPS starts
sending packets on two additional side paths obtained
with BGR, searching for free resources. To avoid disrupting
other flows, the side paths perform more aggressive multipli-
cative rate decrease when congested.

EPS dynamically adjusts to changing conditions and se-
lects the best paths to send the packets without causing oscilla-
tions. The way we achieve this is by doing independent con-
gestion control on each path. If the total available throughput
on the three paths is larger than the sender's packet rate, the
shortest path is preferred (this means that edge paths will send
at a rate smaller than their capacity). On the other hand, if the
shortest path and one of the side paths are congested but one
other side path has unused capacity, our algorithm will natu-

forwardPacket (Node crt, Packet p) f
Node next= chooseBGRNextHop(p);
If(next.isCongested( && !crt.isCongested && !p.IPSsplit){

p.IPSsplit = true; H sets IPS bit
choice = random uniform {Bias Set} He.g. {-a,O,a};
p.setBias(p.bias+choice);
next= chooseBGRNextHop(p);

sendLinkLayerPacket(next,p);

Figure 6. IPS Algorithm (pseudocode)

Figure 7. EPS Algorithm (pseudocode)

rally send almost all the traffic on the latter path to increase
throughput. The EPS algorithm detects congestion in the same

way as IPS. Pseudocode for a simplified version of EPS in
presented in Fig. 7.

1) Congestion Signaling
Choosing an appropriate closed loop feedback mechanism

impacts the performance of EPS. Unlike WTCP [18] which
monitors packet inter-arrival times or CODA [11] which does

100

//For simplicity, we assume a single destination and three paths
MaxPaths = 3; bias={O, 45°,-45°}; reduce-rate= {0.85, 0.7, 0.7};
H/sender side pseudocode
receiveFeedback (int path, bool flowCongested) {

if (!EPS_Split) Hnot already split
if(flowCongested) splitSinglePath(;
else sendingRates[O] += increase rate; Hadditive increase

else Hwe have already split the flow into multiple paths
if(flowCongested) sendingRates[path] *= reduce_rate[path];
else { H no congestion, we increase the path sending rate

if(path == 0) { H main path
sendingRates[O] += increase rate; Hadditive increase
totalAvailableRate = sum(sendingRates);
if(totalAvailRate > 1) { Hwe can transmit more than we want

diff= 1 - totalAvailableRate;
for(int i = 1; i < MaxPaths; i++)
sendingRates[i] - = diff*sendingRates[i]/

(totalAvailableRate - sendingRates[O]);

else sendingRates[path] += min(increase rate,
1-sum(sendingRates))

}
splitSinglePath()

for(int i = 0; i < MaxPaths; i++) sendingRates[i] = 1 / MaxPaths;
EPS_Split = true;

}
sendPacketTimerFired()

path_choice = LotteryScheduling(sendingRates);
Packet p = Buffer.getNext(; Horthogonal buffer policy
p.split = EPS Split; H ifwe split or not
p.bias = bias[path_choice];
next= chooseBGRNextHop(p);
... Hother variables
sendLinkLayerPacket(next,p);

}
HI receiver side pseudocode
receivePacket(Packet p) {

receivedPackets[p.source] [p.path]++;
if(p.congested) congestedPackets[p.source] [p.path]++;
if(receivedPackets[p.source][p.path] > messagesPerAck) {

boolean isCongested=congestedPackets[p.source][p.path] >
packets[p.source][p.path]/2);

sendFeedback(p.source, isCongested);
... Hreinitialize state variables

}



local congestion measurements at the destination, we use a
more accurate yet lightweight mechanism, similar to Explicit
Congestion Notification (ECN) [13]. Nodes set a congestion
bit in each packet they forward when congestion is detected. In
our implementation, the receiver sends state messages to the
sender to indicate the state of the flow. State messages are
triggered by the receipt of a predefined number of messages,
as in CODA.

The number of packets acknowledged by one feedback
message is a parameter of the algorithm, which creates a
tradeoff between high overhead and accurate congestion sig-
naling (e.g., each packet is acknowledged) and less expensive
but also less accurate signaling.

The destination maintains two counters for each path of
each incoming flow: packets counts the number of packets
received on the path, while congested counts the number of
packets that have been lost or received and have the congested
bit set to 1. When packets reaches a threshold value (given by
a parameter called messagesper ack), the destination creates
a feedback message and sends it to the source. The feedback is
negative if at least half of the packets received by the destina-
tion have the congestion bit set, or positive otherwise. As sug-
gested in the ECN paper [13], this effectively implements a
low pass filter to avoid signaling transient congestions, and has
the positive effect that congestion will not be signaled if it can
be quickly relieved with our IPS.

2) RTT estimation
When the sender starts the flow, it starts a timer equal to:

messages_per ack Ipacket_rate + 2 hopcount hop_time.
We estimate hop_count using the expected inter-node distance;
hop_time is chosen as an upper bound for the time taken by a
packet to travel one hop. Timer expiration is treated as nega-
tive feedback. A more accurate timer might be implemented
by embedding timestamps in the packets (such as WTCP,
TCP) but we avoid that due to energy efficiency considera-
tions. However, most times the ECN mechanism should trig-
ger the end-to-end mechanism, limiting the use of timeouts to
the cases when acknowledgements are lost.

3) Rate control
When congestion persists even after the flow has been split

at the source, we use congestion control (AIMD) on each indi-
vidual path to alleviate congestion. When negative feedback is
received, multiplicative decrease is performed on the corre-
sponding path's rate. We use differentiated multiplicative de-
crease that is more aggressive on exterior paths than on the
greedy path, to increase energy efficiency; effectively, this
prioritizes greedy traffic when competing with split traffic.
Additive increase is uniform for all paths; when the aggregate
rate of the paths exceeds the maximum rate, we favor the
greedy path to increase energy efficiency. More specifically, if
the additive increase is on the shortest (central) path, exterior
paths are penalized proportionally to their sending rate; other-
wise, the rate of side path is increased only up to the overall
desired rate (see pseudocode in Fig.7).

E. Discussion
As opposed to IPS, EPS is suited for long lived flows and

adapts to a wider range of traffic characteristics, relieving per-
sistent or wide-spread congestion when it appears. The paths

created by this technique are more symmetric and thus further
away from each other, resulting in less-interference. The
mechanism requires each end-node maintain state information
for its incoming and outgoing flows of packets, including
number of paths, as well as spread angle and send rate for each
path. The price of source splitting is represented by the peri-
odic signaling messages. If reliable message transfer is re-
quired, this cost is amortized as congestion information can be
piggybacked in the acknowledgement messages.

F. Limitations
When congestion is widespread and long-lived, splitting

might make things worse since paths are longer and the entire
network is already congested. However, as we show in the
Evaluation section, this only happens when the individual flow
throughput gets dramatically small (10% of the normal value)
and when the costs of path splitting - in terms of loss in
throughput- are insignificant.

Also, if paths interfere severely, splitting traffic might
make things worse due to media access collisions, as more
nodes are transmitting. This is not to say that we can only use
completely non-interfering paths. In fact, as we show in Sec-
tion V, our approach exploits the tradeoff between contention
(when nodes hear each other and contend for media) and inter-
ference (nodes do not hear each other but their packets col-
lide): throughput is more affected by high contention than by
interference.

IV. EVALUATION OF IPS AND EPS

In this section we present simulation results obtained
through ns2 simulations [6]. We use two main metrics for our
measurements: throughput increase and fairness among flows.

We ran tests on a network of 400 nodes, distributed uni-
formly on a grid in a square area of 6000m x 6000m. We as-
sume events occur uniformly at random in the geographical
area; the node closest to the event triggers a communication
burst to a uniformly selected destination. To emulate this
model we select a set of random source-destination pairs and
run 20-second synchronous communications among all pairs.
The data we present is averaged over hundreds of such itera-
tions. The parameters are summarized in Table 1.

An important parameter of our solution is the number of
paths a flow should be split into and their corresponding bi-
ases. Simulation measurements show that the number of non-
interfering paths between a source and a destination is usually
quite small (more paths would only make sense on very large
networks). Therefore we choose to split a flow exactly once
into 3 sub-flows if congestion is detected. We prefer this to
splitting in two flows for energy efficiency considerations (the
cheaper, greedy path is also used). We have experimentally
chosen the biases to be +/-45 degrees for EPS and +/- 90 de-
grees for IPS.

Parameter
Number of nodes
Area size
MAC
Radio Range
Contention Range
Average Node Degree

TABLE 1. SUMMARY OF PARAMETERS
Value Parameter
400 Link Layer Transmission Rate
6000m x 6000m RTS/CTS
802.11 Retransmission count (ARQ)
250m Interface queue
550m Packet size

z 8 Packet frequency

Value
2Mbps
No
4
4
1 OOB
80/s
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We select multiplicative decrease cutoff values through
simulations, aiming to maximize throughput. We use a value
of 0.85 for the greedy path (in both our algorithm and the sin-
gle path AIMD) and 0.7 for the side paths. We analyzed dif-
ferent cutoff values for side paths and found that throughput
only varies with 300 when the non-greedy paths' cutoff factor
varies in the range [0.3-0.85]; 0.7 achieves close to maximum
throughput and is more energy efficient than 0.85.

A. Results Summary
As expected, our solution works well for flows where the

distance between the source and the destination is large
enough to allow the use of non-interfering multiple paths. The
EPS + IPS combination increases long-range flow throughputs
with around 7000 as compared to single path transmission
(both with and without AIMD). For short-range flows, where
multiple paths cannot be used, the throughput obtained by our

solution is smaller with at most 14%, as the short-range flows
interfere with split flows of long-range communications. How-
ever, by increasing long-range flows' throughput we improve
fairness among the different flows achieving a lower through-
put variance across flows with different lengths by 3500 com-

pared to a single path with AIMD. Moreover, the overall
throughput is increased with around 10% for a moderate level
of load (e.g. 3-6 concurrent transmissions).

Finally, we show that our algorithm (IPS+EPS) does not
increase the number of losses compared to AIMD.

B. Throughput Variation with Distance
Fig. 8.a plots throughput as a function of the hop distance

between the source and destination nodes. Single path greedy
routing is shown as "Simple" while "AIMD" represents single
path with rate control. The results are for 5 concurrent trans-
missions. The relative throughput increase of IPS+EPS com-

pared to AIMD is presented in Fig. 8.b.
For long distance flows, the combination IPS+EPS

achieves up to over 7000 increase as compared to single path
routing (both with and without AIMD).

In fact, our algorithm works increasingly better as the net-

Figure 10 Received vs Transmissions

work diameter increases (preserving the ratio of transmissions
per node). Given the large contention range (550m), we chose
to split from the source only long-range flows - flows where
the distance between endpoints is larger than 1200m (6-8
hops). Shorter flows (less than 3 hops) are affected by exterior
paths of split long-range flows. Short to medium range flows
are more affected; 4-5 hops are most affected having a 15%
throughput drop.

IPS alone incurs smaller throughput penalties for short-
range flows, but is less beneficial to long-range flows.

We observe that the throughput of single path transmis-
sions gets lower as the distance increases, as longer paths have
higher probability of intersecting other flows and hence of
losing packets. On the other hand, the throughput for our solu-
tion (IPS + EPS) remains almost the same as the distance in-
creases. This translates into improved fairness between flows.
We computed the variation of the throughput for all the flows
in our measurements and found that IPS+EPS's variance is
36% lower when compared to "AIMD" and twice as small as

the variance of "Simple".
Finally, network throughput is increased by a little over 700

when using IPS+EPS and by 8% when using only IPS. This
represents the combined increase for both the short and the
long distance flows and will increase for larger networks and
decrease for smaller networks.

Note that this chart looks similar when drawn for a differ-
ent number of transmissions or for a different rate.

C. Impact ofnumber oftransmissions and rate

Fig. 9 presents how the number of transmissions in the
network affects the average flow throughput. Throughput dras-
tically decreases as the network becomes congested regardless
of the mechanism used. For moderate number of transmissions
(3-5) the combination IPS+EPS increases the overall through-
put by around 10%. IPS achieves the largest throughput. How-
ever, it is not using rate control and a lot of the sent packets are

lost, leading to inefficiency (see Fig. 10).
Fig. 10 shows that the combination IPS+EPS has a similar

packet loss rate to "AIMD". Fig. 1 l.b shows this is also true
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Figure 12. Paths from node A:27 to node P:14 on the Mirage Intel Lab Testbed

- --- 50° bias 400 bias 250 bias Greedy=lower 25° bias trajectory

when the transmission rate varies. This is important on two
counts: first, for energy efficiency reasons, and second, to im-
plement reliable transmission.

Fig. l l.a displays the overall throughput for different
transmission rates. As we can see the throughput flattens out as
congestion builds in the network but the (small) overall in-
crease remains approximately steady.

V. IMPLEMENTATION IN TINYOS

To prove our claims, we have implemented BGR and mul-
tipath routing on the largest wireless testbed we had available,
the Berkeley Intel Research Lab testbed called Mirage [21].
This sensor network testbed has 95 MicaZ [22] motes. The
topology of the testbed is presented in Fig.12.

We implemented BGR in TinyOS [19], the de-facto stan-
dard development environment for sensor networks. We tested
our implementation in the TOSSIM [20] simulator, and on the
testbed. Here we present the results from the testbed. The re-
sults suggest that BGR can be used in real life and that sending
packets on multiple paths has the potential of obtaining higher
throughputs and of mitigating congestion.

A. Notes on the implementation
To implement BGR in TinyOS we had to implement the

trigonometric functions of atan, sin and cos. We use simple
and accurate approximation algorithms, all contained within 30
lines of C code. As compared to greedy routing, the BGR algo-
rithm adds just one call for each of the above functions. The
extra overhead is negligible in regards to the other computa-
tional tasks motes have to accomplish. To select neighbors, we
used periodic broadcasting and an exponential average of the
link quality estimation (LQI) provided automatically by the
CC2420 radio [23].

B. Experimental Setup
In order to increase path lengths, we reduced the radio

transmission power of the motes to the smallest power that
kept the testbed reasonably connected (-22 dBm). Even so,
nodes from one side of the network can occasionally receive
messages from nodes on the opposite side (vertical in Fig. 12).
Thus, our primary assumption of non-interfering paths is not
true on this testbed. Consequently, we used for testing only the
central part of the testbed formed by a rectangular continuous
mesh of 45 nodes.

In this context, the main result of our experiment is the

tradeoff between contention (nodes hear each other and refrain
from sending) and interference (nodes do not hear each other
but packets are lost due simultaneous transmissions). High rate
intersecting greedy paths create contention in the center of the
network that leads to congestion; in this case sending data on
the edges of the network is desirable. At lower transmission
rates, greedy routing is preferable since the side paths are
longer and affected by interference.

C. Description ofthe experiment
We consider two communication flows and use the nodes

in the corners of the central area as endpoints. In our experi-
ments, the node situated at P:29 sends packets to the node situ-
ated at A: 14 and the node situated at P: 14 sends packets to the
node at A:27. We measure the throughput obtained when using
geographic greedy routing and when splitting the traffic on
two BGR paths.

We vary different parameters such as neighbor link quality
threshold and the transmission rate. In order to create conges-
tion, we synchronize the two senders. We use biases of +/-400
for the split paths; the values of the bias were chosen experi-
mentally.

To filter out neighbors with poor links we use a threshold
on the averaged link quality estimator (LQI). The maximum
value of the 7 bit LQI filled by the communication driver for
the CC2420 is 108, with 80's being the lower part of the work-
ing values. Because LQI refers to the reversed link that the
packet will traverse, we would desire it as high as possible
because it is known that, with high probability, strong links are
bidirectional good.

D. Results and observations
Fig. 12 shows sample BGR paths on the testbed for three

different biases. As link quality oscillates in time, for some
paths (including greedy) we encountered two different ver-
sions. For illustrative purposes, we only present here one run
(the LQI threshold is set to 84).

Tables 2-4 show the number of packets each destination
receives out of 500 total packets sent, at three transmission
rates: 40 packets/s (high contention), 33 packets/s (medium
contention) and 20 packets/s (low contention). For each send-
ing rate, we vary the neighbor selection threshold. Due to link
quality oscillations, we sometimes measured different results
for the same values of the parameters; these differences were
caused by different path choices. We present both sets of re-
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sults when the difference was large (as for LQI 86). Table 3
can be read as: when using only neighbors with averaged LQI
value greater than 84, the total number packets received by the
two destinations is 739 when sending on greedy paths and 869
when splitting the traffic on two BGR paths.

Overall, we observe that, at high transmission rates (40
packets per second), using multiple paths results in an increase
of the delivery ratio from II% up to 167%. The increase in
throughput gets smaller as we decrease the transmission rate.

Table 5 shows the throughput variation as a function of re-
transmission count, when LQI is 84. As we increase the num-
ber of retransmissions, the throughput increases up to a point
and then starts decreasing due to queue losses. Greedy is much
more affected due to the higher packet frequency on the paths
(actually in this case the two paths have a common hop). Also,
greedy uses longer links that are worse on average and require
more retransmissions (equivalent to increasing the transmis-
sion rate).

E. Short comments on the results
In our settings, greedy has best throughput at medium link

quality thresholds. The most important reason is that links are
still good and there are fewer nodes contending over the cen-
tral broadcast domain. However, if the LQI threshold is low
(80), the obtained throughput is highly variable, since some
links are bad (i.e. almost all the packets are dropped). Because
greedy forwarding chooses the most distant hop, the probabil-
ity of encountering a bad link is high. For instance, at LQI 80,
one communication is completely disrupted.

The throughput of the split BGR paths is less influenced by
the LQI threshold. One reason is that distances traveled by a
packet on each hop vary less for BGR hops as opposed to
greedy. However, the maximum throughput is achieved at the
same LQI as greedy. As we minimize the LQI threshold, links
become worse and the interference affects the transmissions
more. On the other hand, if we further increase the neighbor
quality selection, the number of neighbor choices for BGR
decreases (at LQI 86 some nodes have only one or two
neighbors) and there is less control on the paths, which are
longer and closer to each other. This is why the throughput
decreases at the highest quality threshold.

Finally, there are runs for which sending on the two split
paths results in a lower throughput (e.g. at 33 packets/s LQI
82). In such cases, the paths have a common point where inter-
ference is severe. This is not surprising, since the width of the
testbed is quite narrow when compared to the radio range.

To conclude, our preliminary results suggest that, in practi-
cal scenarios, splitting the traffic in two BGR paths can pro-
vide better throughput performance than greedy routing in case
of congestion and that the cost of interference is not high at
lower transmission rates. However, a larger testbed is needed
to evaluate the IPS and EPS congestion control mechanisms.

VI. RELATED WORK

To reflect this work's main contributions, we split the re-
lated work in two parts, describing congestion control in wire-
less networks and multipath algorithms, respectively.

A. Congestion Controlfor Wireless Sensor Networks
Congestion control in sensor networks for single flows has

been initially explored by CODA [11] and FUSION [12].
Congestion is detected by sampling the wireless medium and

TABLE 2-NUMBER OF PACKETS RECEIVED AT 40 PACKETS/S
Method Dest LQI 80 | LQI 82 | LQI 84 | LQI 86 l

A:14 1 | 244 | 197 | 182 l
1 path A:27 267 | 418 | 211 | 219 l

Sum 267 | 662 | 408 | 401 l
A: 14 305 | 372 | 356 | 303 l

2 paths 400 bias A:27 409 364 349 271
Sum 714 737 705 574

% increase 167 11 72 42
TABLE 3 -NUMBER OF PACKETS RECEIVED AT 3 3 PACKETS/S
Method Dest LQI 80 LQI 82 LQI 84 LQI 86

A: 14 0 476 344 310/401
1 path A:27 341 | 469 | 395 | 331/476 l

Sum 341 | 945 | 739 | 641/847 l
A: 14 374 419 435 198/425

2 paths 400 bias A:27 380 415 433 391/328
Sum 754 835 869 589/811

% increase 120 -12 17 -8/-8
TABLE 4-NUMBER OF PACKETS RECEIVED AT 20 PACKETS/S
Method Dest LQI 80 LQI 82 LQI 84 LQI 86

A: 14 0 493 474 394/394
1 path A:27 458 470 | 467 | 381/444

Sum 458 964 | 941 | 775/838
A: 14 469 475 461 237/404

2 paths 400 bias A:27 415 457 459 449/454
Sum 884 932 920 686/958

% increase 93 -3 -2 -12/14
TABLE 5-THROUGHPUT VARIATION/RETRY COUNT AT 3 3 PACKETS/S

Retries Dest 0 2 | 4 | 6
A:14 194 312 344 262

1 path A:27 212 329 395 314
Sum 406 641 739 576
A:14 201 345 435 424

2 paths 400 bias A:27 234 360 433 403
Sum 435 705 869 827

% increase 7 9 17 43

checking that utilization is under a predefined threshold and by
monitoring queue occupancy. In both [11] and [12], conges-
tion alleviation is achieved with two mechanisms: open-loop,
hop-by-hop mechanisms where nodes multiplicatively de-
crease sending rates towards congested neighbors and closed-
loop source regulation, where a source sending at a high rate
requires constant feedback from the destination to maintain its
rate. Our mechanisms are multipath-based counterparts of the
previously mentioned control mechanisms.

Reducing congestion with multipath routing has been ad-
dressed by several other works [27,17,14]. The first important
difference of our work is that the location awareness assump-
tion allows us to more easily create paths further away from
congestion and releases the network from the burden of send-
ing path creation and keep-alive messages and maintaining any
state. Our solution avoids sending control messages in already
congested areas.

Pham and Perreau [27] propose splitting the traffic from
the start into multiple paths to achieve load balance and in-
crease throughput. Unlike their solution we split reactively
when congestion is detected, to avoid the additional costs of
multipath routing when the network is not congested.

Authors of [17] and [14] also propose avoiding congestion
through path diversity. In this paper, we propose a more gen-
eral mechanism which works for both short-term, transient
congestion and but also for long-term congestion through rate
adaptation and dynamic path selection.

Finally, our method of signaling flow congestion and pro-
viding feedback to the source is similar to ECN [13]: a conges-
tion bit in the packet header is set by nodes to signal conges-
tion; to minimize energy consumption, these signals are fil-
tered at the destination and sent to the source periodically.
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B. Geographic Multipath Routing
The simplest instance of a multipath routing protocol in the

context of geographic routing is waypoint routing: a packet is
routed greedily towards a point or a list of points (landmarks)
selected by the source, with the destination being the final
point on the polygonal-line trajectory. As we have showed in
section IV, the curved paths obtained by BGR are finer grained
and have less overlap than single waypoint paths. Moreover,
the waypoint location is usually represented on more than 1
byte (typically location has 2-4 bytes), and thus, BGR has
lower overhead. This is important in wireless networks where
energy, the scarcest resource, is used for sending data.

Trajectory Based Forwarding (TBF) [5] is the algorithm
conceptually closest to BGR. TBF allows routing in networks
with coordinate information on source specified trajectories.
TBF resembles landmark routing, the difference being the way
the landmarks are specified. Instead of embedding them in the
packet, TBF embeds the equation of the trajectory into the
packet and computes the landmarks at each hop. This approach
is computationally expensive and quite complex, since at each
step a part of the trajectory has to be simulated. TBF is generic
and can achieve any trajectory, including approximations of
the trajectories taken by the BGR packets. While TBF nodes
solve an equation to determine the next hop, BGR can be
viewed as a simple extension of greedy routing. Trajectories in
BGR are not explicitly specified and their shape depends on
the characteristics of the network (such as node density), in
contrast to TBF's precise trajectories. In particular, this charac-
teristic comes with the advantage of small communication and
computation overhead (BGR uses one byte while only the data
for the trajectory is typically over 6 bytes) and does not cause
losses in efficiency.

Finally, there is a body of related work on achieving multi-
ple paths without geographic knowledge [7-10,14]. In contrast
to the solutions based on geographic routing, these proposals
do not allow the end host to control the path selection process
and have additional setup and state maintenance costs.

VII. SUMMARY

In this paper, we have presented a solution that increases
fairness and throughput in dense wireless networks. Our solu-
tion achieves its goals by using multipath geographic routing
to find available resources in the network.

Biased Geographical Routing is our proposed solution for
geographic multipath routing. The algorithm is simple and has
low communication overhead; simulation results show that it
compares favorably to other solutions and experimental de-
ployment shows that it is usable in real life.

Running on top of BGR, we have proposed two algo-
rithms, IPS (in-network packet scatter) and EPS (end-to-end
packet scatter), that split a flow into multiple paths when it is
experiencing congestion. IPS tries to solve transient conges-
tion; when congestion persists EPS is activated. EPS performs
rate control to minimize losses while maintaining high
throughput. It uses a less aggressive congestion response for
the non-greedy paths to gracefully capture resources available
in the network.

Ns2 simulation results show that the combination IPS +
EPS successfully improves fairness and throughput with small
additional overhead. Experimental results confirm that multi-
path routing can indeed increase throughput; however, a larger
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