4,600 research outputs found

    Agent-Based Modelling of Charging Behaviour of Electric Vehicle Drivers

    Get PDF
    The combination of electric vehicles (EVs) and intermittent renewable energy sources has received increasing attention over the last few years. Not only does charging electric vehicles with renewable energy realize their true potential as a clean mode of transport, charging electric vehicles at times of peaks in renewable energy production can help large scale integration of renewable energy in the existing energy infrastructure. We present an agent-based model that investigates the potential contribution of this combination. More specifically, we investigate the potential effects of different kinds of policy interventions on aggregate EV charging patterns. The policy interventions include financial incentives, automated smart charging, information campaigns and social charging. We investigate how well the resulting charging patterns are aligned with renewable energy production and how much they affect user satisfaction of EV drivers. Where possible, we integrate empirical data in our model, to ensure realistic scenarios. We use recent theory from environmental psychology to determine agent behaviour, contrary to earlier simulation models, which have focused only on technical and financial considerations. Based on our simulation results, we articulate some policy recommendations. Furthermore, we point to future research directions for environmental psychology scholars and modelers who want to use theory to inform simulation models of energy systems

    Optimisation of electric vehicle battery size

    Get PDF
    Energy storage and battery technologies have taken centre stage in the race to meet the UK government target to ban new petrol and diesel cars by 2030. However, underlying key issues such as resource demand and negative public opinion must be solved before the high uptake of electric vehicles. The research conducted in this paper proposed viable solutions to these challenges through modelling of real driver data utilising an agent based modelling approach. Per month state of charge analysis confirmed that the current charging infrastructure in circulation will not accommodate the miniaturisation of electric vehicle battery size. Thus, an improved alternative charging infrastructure was proposed, which enabled the optimal battery size to be reduced by up to 40%. The users stop times were analysed to assign an optimal battery size based upon monthly driving behaviour concluding daily inner city drivers require a 30kWh battery and daily long distance drivers require a 40kWh battery. When decreasing the battery size by the proposed 40% there is a £2650.60 saving and a 6.4kg lithium demand decrease per battery when compared to the current average battery size

    Empirical analysis of parking behaviour of conventional and electric vehicles for parking modelling:A case study of Beijing, China

    Get PDF
    An empirical study of the parking behaviour of Conventional Vehicles (CVs), Battery Electric Vehicles (BEVs), and Plug-in Hybrid Electric Vehicles (PHEVs) was carried out with the data collected in a paper-based questionnaire survey in Beijing, China. The study investigated the factors that might influence the parking behaviour, with a focus on the maximum acceptable time of walking from parking lot to trip destination, parking fee, the availability of charging posts, the state of charge of EVs and the range anxiety of BEVs. Several Multinomial Logit (MNL) models were developed to explore the relationships between individual attributes and parking choices. The results suggest that (1) the maximum acceptable walking time generally increases with the rise in the amount of saving for parking fee; (2) the availability of charging posts does not influence the maximum acceptable walking time when PHEVs and BEVs have sufficient charge, but the percentage of people willing to walk longer than eight minutes increases from around 35% to 46% when PHEVs are in a low stage of charge; (3) more than half of BEV drivers want the driving range of their vehicles to be one and a half times the driving distance before they depart, given the distance is 50 km. Based on the empirical findings above, a conceptual framework was proposed to explicitly simulate the parking behaviour of both CVs and EVs using agent-based modelling

    Modelling electric vehicles use: a survey on the methods

    No full text
    In the literature electric vehicle use is modelled using of a variety of approaches in power systems, energy and environmental analyses as well as in travel demand analysis. This paper provides a systematic review of these diverse approaches using a twofold classification of electric vehicle use representation, based on the time scale and on substantive differences in the modelling techniques. For time of day analysis of demand we identify activity-based modelling (ABM) as the most attractive because it provides a framework amenable for integrated cross-sector analyses, required for the emerging integration of the transport and electricity network. However, we find that the current examples of implementation of AMB simulation tools for EV-grid interaction analyses have substantial limitations. Amongst the most critical there is the lack of realism how charging behaviour is represented

    Spatial diffusion of electric vehicles in the German metropolitan region of Stuttgart

    Get PDF
    At the moment, interest in electric vehicles (EVs) is increasing worldwide, mainly due to concerns about climate change and rising prices of fossil fuels. EVs still have some significant drawbacks compared to gasoline-powered cars. However, a small part of the population is expected to adopt this technology already within the next years, because higher purchase costs and lower driving range are of less concern to them. They are called the “Early Adopters†of EVs. In this study we developed scenarios for the spatial diffusion of EVs up to 2020 in private households in the municipalities and urban districts of the metropolitan region of Stuttgart in Germany. First, hypotheses of Early Adopters of EVs were constructed based on social mobility profiles and the demands of car drivers. Secondly, the number of these potential adopters was calculated with statistical data for each municipality and urban district. In a third step, we developed a Bass diffusion model with System Dynamics to simulate the spatial diffusion of EVs in the region of Stuttgart. The increase of EV-ownership in each Early Adopter-type in a single municipality depends on the chosen values of the parameters “Advertisement effectivenessâ€, “Contact Rate†and “Adoption Fraction†of the Bass model. Furthermore, neighbourhood effects were modeled such that the increase of EVs in one municipality also depends on the increase of EVs in the neighbouring municipalities. In the baseline scenario, significant spatial differences in the diffusion of EVs up to 2020 become apparent: the highest number of EV-holders will be found in the urban areas of the region. There exist also differences in the number of EVs present at each Early Adopter-type: The “Urban trend-setter†is prevalent in the central districts of Stuttgart, while the “Multi-car family†is mostly located in the more rural municipalities of the region of Stuttgart. The “Dynamic senior citizen†is almost equally distributed in the urban and rural areas. The results of the spatial distribution of potential adopters of EVs can be used for the automobile industry’s marketing campaigns as well as to identify the regional demand for EV charging infrastructure.

    Simulation of electric vehicle driver behaviour in road transport and electric power networks

    Get PDF
    The integration of electric vehicles (EVs) will affect both electricity and transport systems and research is needed on finding possible ways to make a smooth transition to the electrification of the road transport. To fully understand the EV integration consequences, the behaviour of the EV drivers and its impact on these two systems should be studied. This paper describes an integrated simulation-based approach, modelling the EV and its interactions in both road transport and electric power systems. The main components of both systems have been considered, and the EV driver behaviour was modelled using a multi-agent simulation platform. Considering a fleet of 1000 EV agents, two behavioural profiles were studied (Unaware/Aware) to model EV driver behaviour. The two behavioural profiles represent the EV driver in different stages of EV adoption starting with Unaware EV drivers when the public acceptance of EVs is limited, and developing to Aware EV drivers as the electrification of road transport is promoted in an overall context. The EV agents were modelled to follow a realistic activity-based trip pattern, and the impact of EV driver behaviour was simulated on a road transport and electricity grid. It was found that the EV agents’ behaviour has direct and indirect impact on both the road transport network and the electricity grid, affecting the traffic of the roads, the stress of the distribution network and the utilization of the charging infrastructure

    Efficient operation of recharging infrastructure for the accommodation of electric vehicles: a demand driven approach

    Get PDF
    Large deployment and adoption of electric vehicles in the forthcoming years can have significant environmental impact, like mitigation of climate change and reduction of traffic-induced air pollutants. At the same time, it can strain power network operations, demanding effective load management strategies to deal with induced charging demand. One of the biggest challenges is the complexity that electric vehicle (EV) recharging adds to the power system and the inability of the existing grid to cope with the extra burden. Charging coordination should provide individual EV drivers with their requested energy amount and at the same time, it should optimise the allocation of charging events in order to avoid disruptions at the electricity distribution level. This problem could be solved with the introduction of an intermediate agent, known as the aggregator or the charging service provider (CSP). Considering out-of-home charging infrastructure, an additional role for the CSP would be to maximise revenue for parking operators. This thesis contributes to the wider literature of electro-mobility and its effects on power networks with the introduction of a choice-based revenue management method. This approach explicitly treats charging demand since it allows the integration of a decentralised control method with a discrete choice model that captures the preferences of EV drivers. The sensitivities to the joint charging/parking attributes that characterise the demand side have been estimated with EV-PLACE, an online administered stated preference survey. The choice-modelling framework assesses simultaneously out-of-home charging behaviour with scheduling and parking decisions. Also, survey participants are presented with objective probabilities for fluctuations in future prices so that their response to dynamic pricing is investigated. Empirical estimates provide insights into the value that individuals place to the various attributes of the services that are offered by the CSP. The optimisation of operations for recharging infrastructure is evaluated with SOCSim, a micro-simulation framework that is based on activity patterns of London residents. Sensitivity analyses are performed to examine the structural properties of the model and its benefits compared to an uncontrolled scenario are highlighted. The application proposed in this research is practice-ready and recommendations are given to CSPs for its full-scale implementation.Open Acces

    Estimating charging demand by modelling EV drivers' parking patterns and habits

    Get PDF
    The diffusion of battery electric vehicles (BEVs) requires a proper charging infrastructure to supply users the chance to charge their vehicles according to energy, time, and space needs. Thus, city planners and stakeholders need decision support tools to estimate the impacts of potential charging activities and compare alternative scenarios. The paper proposes a modelling approach to represent parking activities in urban areas and obtain key indicators of the electric energy required. The agent-based model reproduces the dynamics of user parking and assesses the impacts on the electricity grid during the day. Since the focus is on parking activities, no detailed data on vehicle trips are required to apply the standard demand modelling approach, which would require Origin-Destination matrices to simulate traffic flows on the road network. Preliminary results concerning the city of Turin are presented for simulated scenarios to identify zones where charging demand can be critical and peak events in electric power over the day. The model is designed to be scalable for all European cities because, as the case study shows, it uses available data. The results obtained can be used for the design of charging infrastructure (power and type) by zones

    Exploring the future Electric Vehicle market and its impacts with an agent-based spatial integrated framework: A case study of Beijing, China

    Get PDF
    This paper investigates the potential expansion and impacts of Electric Vehicle (EV) market in Beijing, China at the micro level with an agent-based integrated urban model (SelfSim-EV), considering the interactions, feedbacks and dynamics found in the complex urban system. Specifically, a calibrated and validated SelfSim-EV Beijing model was firstly used to simulate how the EV market might expand in the context of urban evolution from 2016 to 2020, based on which the potential impacts of EV market expansion on the environment, power grid system and transportation infrastructures were assessed at the multiple resolutions. The results suggest that 1) the adoption rate of Battery Electric Vehicle (BEV) increases over the period, whereas the rate of Plug-in Hybrid Electric Vehicle (PHEV) almost remains the same; Furthermore, the so-called neighbour effects appear to influence the uptake of BEVs, based on the spatial analyses of the residential locations of BEV owners; 2) the EV market expansion could eventually benefit the environment, as evident from the slight decrease in the amounts of HC, CO and CO2 emissions after 2017; 3) Charging demand accounting for around 4% of total residential electricity demand in 2020 may put slight pressure on the power grid system; 4) the EV market expansion could influence several EV-related transport facilities, including parking lots, refuelling stations, and charging posts at parking lots, in terms of quantity, layout and usage. These results are expected to be useful for different EV-related stakeholders, such as local authorities and manufacturers, to shape polices and invest in technologies and infrastructures for EVs
    corecore