10 research outputs found

    Time critical requirements and technical considerations for advanced support environments for data-intensive research

    Get PDF
    Data-centric approaches play an increasing role in many scientific domains, but in turn rely increasingly heavily on advanced research support environments for coordinating research activities, providing access to research data, and choreographing complex experiments. Critical time constraints can be seen in several application scenarios e.g., event detection for disaster early warning, runtime execution steering, and failure recovery. Providing support for executing such time critical research applications is still a challenging issue in many current research support environments however. In this paper, we analyse time critical requirements in three key kinds of research support environment—Virtual Research Environments, Research Infrastructures, and e-Infrastructures—and review the current state of the art. An approach for dynamic infrastructure planning is discussed that may help to address some of these requirements. The work is based on requirements collection recently performed in three EU H2020 projects: SWITCH, ENVRIPLUS and VRE4EIC

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Towards Interoperable Research Infrastructures for Environmental and Earth Sciences

    Get PDF
    This open access book summarises the latest developments on data management in the EU H2020 ENVRIplus project, which brought together more than 20 environmental and Earth science research infrastructures into a single community. It provides readers with a systematic overview of the common challenges faced by research infrastructures and how a ‘reference model guided’ engineering approach can be used to achieve greater interoperability among such infrastructures in the environmental and earth sciences. The 20 contributions in this book are structured in 5 parts on the design, development, deployment, operation and use of research infrastructures. Part one provides an overview of the state of the art of research infrastructure and relevant e-Infrastructure technologies, part two discusses the reference model guided engineering approach, the third part presents the software and tools developed for common data management challenges, the fourth part demonstrates the software via several use cases, and the last part discusses the sustainability and future directions

    Agent-based flow control for HLA components

    No full text
    Human-in-the-loop simulation systems, also called interactive simulation systems (ISSs), play an increasingly important role in problem-solving environments for complex problems. The High Level Architecture (HLA) provides a uniform interface for realizing the interoperability between distributed modules and has been widely applied in the construction of ISSs. However, using the current architecture, control of the simulation logic and activity flows is often fused with interconnection details, and the constituent components of an ISS have limited adaptability for other applications for which they would, in principle, be suited. An agent-based architecture, named the Interactive Simulation System Conductor (ISS-Conductor), is developed on top of the HLA. It provides a separate layer for describing, interpreting, and controlling activity flow between the HLA components. Using the ISS-Conductor architecture, a simulation or an interactive visualization system is encapsulated as a component, which contains an agent for invoking the simulation and visualization activities and an agent for controlling the runtime behavior
    corecore