3,152 research outputs found

    Multi-agent pathfinding for unmanned aerial vehicles

    Get PDF
    Unmanned aerial vehicles (UAVs), commonly known as drones, have become more and more prevalent in recent years. In particular, governmental organizations and companies around the world are starting to research how UAVs can be used to perform tasks such as package deliver, disaster investigation and surveillance of key assets such as pipelines, railroads and bridges. NASA is currently in the early stages of developing an air traffic control system specifically designed to manage UAV operations in low-altitude airspace. Companies such as Amazon and Rakuten are testing large-scale drone deliver services in the USA and Japan. To perform these tasks, safe and conflict-free routes for concurrently operating UAVs must be found. This can be done using multi-agent pathfinding (mapf) algorithms, although the correct choice of algorithms is not clear. This is because many state of the art mapf algorithms have only been tested in 2D space in maps with many obstacles, while UAVs operate in 3D space in open maps with few obstacles. In addition, when an unexpected event occurs in the airspace and UAVs are forced to deviate from their original routes while inflight, new conflict-free routes must be found. Planning for these unexpected events is commonly known as contingency planning. With manned aircraft, contingency plans can be created in advance or on a case-by-case basis while inflight. The scale at which UAVs operate, combined with the fact that unexpected events may occur anywhere at any time make both advanced planning and planning on a case-by-case basis impossible. Thus, a new approach is needed. Online multi-agent pathfinding (online mapf) looks to be a promising solution. Online mapf utilizes traditional mapf algorithms to perform path planning in real-time. That is, new routes for UAVs are found while inflight. The primary contribution of this thesis is to present one possible approach to UAV contingency planning using online multi-agent pathfinding algorithms, which can be used as a baseline for future research and development. It also provides an in-depth overview and analysis of offline mapf algorithms with the goal of determining which ones are likely to perform best when applied to UAVs. Finally, to further this same goal, a few different mapf algorithms are experimentally tested and analyzed

    Network-wide assessment of 4D trajectory adjustments using an agent-based model

    Get PDF
    This paper presents results from the SESAR ER3 Domino project. It focuses on an ECAC-wide assessment of two 4D-adjustment mechanisms, implemented separately and conjointly. These reflect flight behaviour en-route and at-gate, optimising given (cost) objective functions. New metrics designed to capture network effects are used to analyse the results of a microscopic, agent based model. The results show that some implementations of the mechanisms allow the protection of the network from ‘domino’ effects. Airlines focusing on costs may trigger additional side-effects on passengers, displaying, in some instances, clear trade-offs between passenger- and flight-centric metrics

    Experimental validation of COMETA model of mental workload in air traffic control

    Full text link
    The sustained increase in air traffic during the last decades represents a challenge to the air traffic management system in general. Thus, it is of utmost importance to develop strategies that can safely increase air traffic controller's handling capacity without increasing task related strain. This research proposes and validates a predictive model of air traffic controller's mental workload. Our model is based on COMETA, a model that considers the effect of the most relevant air traffic events in the cognitive complexity of the task. In the version of COMETA used in this study we include the online effects of the controllers' actions on the state of the airspace. To validate the model, a laboratory experiment was conducted using a simulator to precisely control the task workload factors. We used traffic density and airspace complexity as experimental factors because they are the most commonly acknowledged sources of mental workload in air traffic control literature. The measured dependent variables were selected because they have been found to correlate with mental workload in ATC tasks, namely, ISA and NASA indexes, electrodermal activity, heart rate, and different performance measures. The results demonstrate that our model can successfully predict air traffic controllers' mental workload across a wide range of task workload conditions. In addition, our results provide a clear portrait of the complex interactions between the different sources of task workload and their effects on mental workload. In the conclusion we consider the limitations and opportunities for the application of this model to improve policie

    Inverse Optimal Planning for Air Traffic Control

    Full text link
    We envision a system that concisely describes the rules of air traffic control, assists human operators and supports dense autonomous air traffic around commercial airports. We develop a method to learn the rules of air traffic control from real data as a cost function via maximum entropy inverse reinforcement learning. This cost function is used as a penalty for a search-based motion planning method that discretizes both the control and the state space. We illustrate the methodology by showing that our approach can learn to imitate the airport arrival routes and separation rules of dense commercial air traffic. The resulting trajectories are shown to be safe, feasible, and efficient

    Large-Scale Unmanned Aerial Systems Traffic Density Prediction and Management

    Get PDF
    In recent years, the applications of Unmanned Aerial Systems (UAS) has become more and more popular. We envision that in the near future, the complicated and high density UAS traffic will impose significant burden to air traffic management. Lot of works focus on the application development of individual Small Unmanned Aerial Systems (sUAS) or sUAS management Policy, however, the study of the UAS cluster behaviors such as forecasting and managing of the UAS traffic has generally not been addressed. In order to address the above issue, there is an urgent need to investigate three research directions. The first direction is to develop a high fidelity simulator for the UAS cluster behavior evaluation. The second direction to study real time trajectory planning algorithms to mitigate the high dense UAS traffic. The last direction is to investigate techniques that rapidly and accurately forecast the UAS traffic pattern in the future. In this thesis, we elaborate these three research topics and present a universal paradigm to predict and manage the traffic for the large-scale unmanned aerial systems. To enable the research in UAS traffic management and prediction, a Java based Multi-Agent Air Traffic and Resource Usage Simulation (MATRUS) framework is first developed. We use two types of UAS trajectories, Point-to-Point (P2P) and Man- hattan, as the case study to describe the capability of presented framework. Various communication and propagation models (i.e. log-distance-path loss) can be integrated with the framework to model the communication between UASs and base stations. The results show that MATRUS has the ability to evaluate different sUAS traffic management policies, and can provide insights on the relationships between air traf- fic and communication resource usage for further studies. Moreover, the framework can be extended to study the effect of sUAS Detect-and-Avoid (DAA) mechanisms, implement additional traffic management policies, and handle more complex traffic demands and geographical distributions. Based on the MATRUS framework, we propose a Sparse Represented Temporal- Spatial (SRTS) UAS trajectory planning algorithm. The SRTS algorithm allows the sUAS to avoid static no-fly areas (i.e. static obstacles) or other areas that have congested air traffic or communication traffic. The core functionality of the routing algorithm supports the instant refresh of the in-flight environment making it appropri- ate for highly dynamic air traffic scenarios. The characterization of the routing time and memory usage demonstrate that the SRTS algorithm outperforms a traditional Temporal-Spatial routing algorithm. The deep learning based approach has shown an outstanding success in many areas, we first investigated the possibility of applying the deep neural network in predicting the trajectory of a single vehicle in a given traffic scene. A new trajectory prediction model is developed, which allows information sharing among vehicles using a graph neural network. The prediction is based on the embedding feature, which is derived from multi-dimensional input sequences including the historical trajectory of target and neighboring vehicles, and their relative positions. Compared to other existing trajectory prediction methods, the proposed approach can reduce the pre- diction error by up to 50.00%. Then, we present a deep neural network model that extracts the features from both spatial and temporal domains to predict the UAS traffic density. In addition, a novel input representation of the future sUAS mission information is proposed. The pre-scheduled missions are categorized into 3 types according to their launching times. The results show that our presented model out- performs all of the baseline models. Meanwhile, the qualitative results demonstrate that our model can accurately predict the hot spot in the future traffic map

    Decentralized Control of Partially Observable Markov Decision Processes using Belief Space Macro-actions

    Get PDF
    The focus of this paper is on solving multi-robot planning problems in continuous spaces with partial observability. Decentralized partially observable Markov decision processes (Dec-POMDPs) are general models for multi-robot coordination problems, but representing and solving Dec-POMDPs is often intractable for large problems. To allow for a high-level representation that is natural for multi-robot problems and scalable to large discrete and continuous problems, this paper extends the Dec-POMDP model to the decentralized partially observable semi-Markov decision process (Dec-POSMDP). The Dec-POSMDP formulation allows asynchronous decision-making by the robots, which is crucial in multi-robot domains. We also present an algorithm for solving this Dec-POSMDP which is much more scalable than previous methods since it can incorporate closed-loop belief space macro-actions in planning. These macro-actions are automatically constructed to produce robust solutions. The proposed method's performance is evaluated on a complex multi-robot package delivery problem under uncertainty, showing that our approach can naturally represent multi-robot problems and provide high-quality solutions for large-scale problems

    Architecture and Information Requirements to Assess and Predict Flight Safety Risks During Highly Autonomous Urban Flight Operations

    Get PDF
    As aviation adopts new and increasingly complex operational paradigms, vehicle types, and technologies to broaden airspace capability and efficiency, maintaining a safe system will require recognition and timely mitigation of new safety issues as they emerge and before significant consequences occur. A shift toward a more predictive risk mitigation capability becomes critical to meet this challenge. In-time safety assurance comprises monitoring, assessment, and mitigation functions that proactively reduce risk in complex operational environments where the interplay of hazards may not be known (and therefore not accounted for) during design. These functions can also help to understand and predict emergent effects caused by the increased use of automation or autonomous functions that may exhibit unexpected non-deterministic behaviors. The envisioned monitoring and assessment functions can look for precursors, anomalies, and trends (PATs) by applying model-based and data-driven methods. Outputs would then drive downstream mitigation(s) if needed to reduce risk. These mitigations may be accomplished using traditional design revision processes or via operational (and sometimes automated) mechanisms. The latter refers to the in-time aspect of the system concept. This report comprises architecture and information requirements and considerations toward enabling such a capability within the domain of low altitude highly autonomous urban flight operations. This domain may span, for example, public-use surveillance missions flown by small unmanned aircraft (e.g., infrastructure inspection, facility management, emergency response, law enforcement, and/or security) to transportation missions flown by larger aircraft that may carry passengers or deliver products. Caveat: Any stated requirements in this report should be considered initial requirements that are intended to drive research and development (R&D). These initial requirements are likely to evolve based on R&D findings, refinement of operational concepts, industry advances, and new industry or regulatory policies or standards related to safety assurance
    corecore