1,315 research outputs found

    Agent Behavioral Analysis Based on Absorbing Markov Chains

    Get PDF
    We propose a novel technique to identify known behaviors of intelligent agents acting within uncertain environments. We employ Markov chains to represent the observed behavioral models of the agents and we formulate the problem as a classification task. In particular, we propose to use the long-term transition probability values of moving between states of the Markov chain as features. Additionally, we transform our models into absorbing Markov chains, enabling the use of standard techniques to compute such features. The empirical evaluation considers two scenarios: the identification of given strategies in classical games, and the detection of malicious behaviors in malware analysis. Results show that our approach can provide informative features to successfully identify known behavioral patterns. In more detail, we show that focusing on the long-term transition probability enables to diminish the error introduced by noisy states and transitions that may be present in an observed behavioral model. We pose particular attention to the case of noise that may be intentionally introduced by a target agent to deceive an observer agent

    Intelligent Agents for Active Malware Analysis

    Get PDF
    The main contribution of this thesis is to give a novel perspective on Active Malware Analysis modeled as a decision making process between intelligent agents. We propose solutions aimed at extracting the behaviors of malware agents with advanced Artificial Intelligence techniques. In particular, we devise novel action selection strategies for the analyzer agents that allow to analyze malware by selecting sequences of triggering actions aimed at maximizing the information acquired. The goal is to create informative models representing the behaviors of the malware agents observed while interacting with them during the analysis process. Such models can then be used to effectively compare a malware against others and to correctly identify the malware famil

    The impact of agent density on scalability in collective systems : noise-induced versus majority-based bistability

    Get PDF
    In this paper, we show that non-uniform distributions in swarms of agents have an impact on the scalability of collective decision-making. In particular, we highlight the relevance of noise-induced bistability in very sparse swarm systems and the failure of these systems to scale. Our work is based on three decision models. In the first model, each agent can change its decision after being recruited by a nearby agent. The second model captures the dynamics of dense swarms controlled by the majority rule (i.e., agents switch their opinion to comply with that of the majority of their neighbors). The third model combines the first two, with the aim of studying the role of non-uniform swarm density in the performance of collective decision-making. Based on the three models, we formulate a set of requirements for convergence and scalability in collective decision-making

    Stochastically stable implementation

    Get PDF
    Restricting attention to economic environments, we study implementation under perturbed better-response dynamics (BRD). A social choice function (SCF) is implementable in stochastically stable strategies of perturbed BRD whenever the only outcome supported by the stochastically stable strategies of the perturbed process is the outcome prescribed by the SCF. For uniform mistakes, we show that any Δ-secure and strongly efficient SCF is implementable when there are at least five agents. Extensions to incomplete information environments are also obtained.Robust implementation, Bounded rationality, Evolutionary dynamics, Mechanisms, Stochastic stability

    Dynamics in atomic signaling games

    Full text link
    We study an atomic signaling game under stochastic evolutionary dynamics. There is a finite number of players who repeatedly update from a finite number of available languages/signaling strategies. Players imitate the most fit agents with high probability or mutate with low probability. We analyze the long-run distribution of states and show that, for sufficiently small mutation probability, its support is limited to efficient communication systems. We find that this behavior is insensitive to the particular choice of evolutionary dynamic, a property that is due to the game having a potential structure with a potential function corresponding to average fitness. Consequently, the model supports conclusions similar to those found in the literature on language competition. That is, we show that efficient languages eventually predominate the society while reproducing the empirical phenomenon of linguistic drift. The emergence of efficiency in the atomic case can be contrasted with results for non-atomic signaling games that establish the non-negligible possibility of convergence, under replicator dynamics, to states of unbounded efficiency loss

    Stochastically stable implementation.

    Get PDF
    Restricting attention to economic environments, we study implementation under perturbed better-response dynamics (BRD). A social choice function (SCF) is implementable in stochastically stable strategies of perturbed BRD whenever the only outcome supported by the stochastically stable strategies of the perturbed process is the outcome prescribed by the SCF. For uniform mistakes, we show that any Δ-secure and strongly efficient SCF is implementable when there are at least five agents. Extensions to incomplete information environments are also obtained.Robust implementation; Bounded rationality; Evolutionary dynamics; Mechanisms; Stochastic stability;
    • 

    corecore