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ABSTRACT
We propose a novel technique to identify known behaviors of in-

telligent agents acting within uncertain environments. We employ

Markov chains to represent the observed behavioral models of

the agents and we formulate the problem as a classification task.

In particular, we propose to use the long-term transition proba-

bility values of moving between states of the Markov chain as

features. Additionally, we transform our models into absorbing

Markov chains, enabling the use of standard techniques to compute

such features. The empirical evaluation considers two scenarios:

the identification of given strategies in classical games, and the

detection of malicious behaviors in malware analysis. Results show

that our approach can provide informative features to successfully

identify known behavioral patterns. In more detail, we show that

focusing on the long-term transition probability enables to dimin-

ish the error introduced by noisy states and transitions that may

be present in an observed behavioral model. We pose particular

attention to the case of noise that may be intentionally introduced

by a target agent to deceive an observer agent.
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1 INTRODUCTION
Many practical problems of interest can be represented as sys-

tems where intelligent agents interact within complex uncertain

environments, gathering information and adapting their behaviors

accordingly, e.g., security, robotics, entertainment and so forth. In

such scenarios, an important issue is to identify whether a known

behavior appears within a behavioral model that has been learned

through observations [2, 8]. A key challenge in this context is to deal

with the presence of noise, e.g., while performing a difficult task an

agent might make mistakes trying to follow its policy, consequently

injecting noise into the behavioral model learned by observing the

execution of that task. Moreover, noise injection could be inten-

tional, e.g., a malicious agent might try to mask its real intentions

and to deceive potential observers [11].

In this work we aim at improving the identification of behavioral

models performed by an analyzer agent that can interact with and

observe the effect of the actions taken by a target agent which fol-

lows an unknown policy. The main hypothesis of our approach is

that in the long-term, the intended behavior of the target agent will
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emerge, hence allowing the analyzer to filter out possible mislead-

ing observations. Following relevant literature [1, 10, 13, 19, 21, 28],

we represent the behavior of the target agent by using Markov

chains. However, a novelty of our work is to propose the use of the

long-term transition probability of the Markov chain as features to

identify the target agent’s behavior. With long-term transition prob-

ability, we refer to the probability values of going from each state

to every other, giving the process represented by the Markov chain

enough time to reach a fixpoint, i.e., when the result would not

change anymore from that point onward. We design our methodol-

ogy in order to make it applicable independently of the technique

used to obtain the behavioral models of the target agents (as long

as they can be interpreted as Markov chains). Consequently, we

can not make any assumptions on the various properties that the

Markov chains may hold. A crucial technical difficulty related to

this idea is the computation of the long-term transition probability

values as features for generic Markov chains. In fact, while there

are methods to compute different long-term characteristics, e.g.,

the stationary distribution or the time to absorption [9], their appli-

cation is subject to the presence of specific properties, irreducibility

and absorbency respectively, that generic Markov chains may not

have. For example, in our experiments we have large models that

are generated through the observation of an agent’s policy. For such

models, the absorbency property, which is a fundamental require-

ment to compute long-term transition probability, never holds. To

overcome this problem we propose a transformation of the Markov

chain that enforces the absorbency property and allows to derive

the long-term transition probability for the original Markov chain.

Our approach is designed to be employed as an analysis tool fol-

lowing any behavioral model generation techniques when the pres-

ence of noise or deceitful behaviors should be considered. Hence,

the focus of this paper is not to improve the process of obtaining the

behavioral models (although obviously some techniques can give

better final results for particular domains), but rather the approach

used to analyze them after they have been generated. In more detail,

we pose the identification problem as a classification task, where

we are given a set of known models divided into classes, i.e., a set

of labeled Markov chains, and a set of models representing the

observed unknown behavior of the target agents, i.e., a set of unla-

beled Markov chains. Our aim is to identify such unknown models

assigning them to the known classes. The long-term transition

probability values of moving between states are used as features to

train a standard classifier, which is a Support Vector Machine (SVM)

in our case. We conduct two sets of experiments: the first one aims

at identifying known strategies within classical games, namely the

iterated Prisoner’s Dilemma and a repeated lottery game. The sec-

ond one aims at identifying specific malicious behaviors in models

representing dynamics of malicious software agents, i.e., malware.
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The first experiment evaluates whether our approach can be used

in a generic setting that involves the interactions of intelligent

agents, whereas the second experiment focuses on the concrete

cyber-security application of identifying malicious behaviors of

software programs.

In summary, our contributions are the following:

(1) We consider the use of a classification approach to identify

unknown behaviors w.r.t. a set of known classes, where

behaviors are modeled as Markov chains. The long-term

transition probability values of moving between states are

employed as features for the task.

(2) We define a transformation for Markov chains enforcing

the absorbency property. This allows us to use standard

techniques to derive the long-term transition probability

for generic Markov chains without requiring any specific

properties.

(3) We empirically evaluate our approach on behavioral models

of players interacting within classical games and of real ma-

licious software agents respectively. Results show that our

technique provides informative features suitable to success-

fully identify known behaviors in both empirical settings. In

particular, this method allows to diminish the effect of noise

injected into the behavioral models by malicious software

agents, overcoming a limitation of the current state-of-the-

art malware analysis techniques.

2 RELATEDWORK
The main focus of this work is to analyze the behavioral models

extracted by observing the effect of the actions performed by a

target agent within a fully observable environment. Markov chains

are particularly suited for such task and have been widely used

in scenarios that range from reliability analysis of software pro-

grams [24] to HTTP traffic optimization [13, 21, 28]. However, the

methods that such previous approaches propose to compare the

different models either impose constraints on the models to be

analyzed, e.g., [24] requires one Markov chain to be a sub-graph of

the other, or perform transformations that are application specific,

e.g., [13, 28] require cycles to be removed and arbitrary states to

be grouped together, hence neglecting significant information for

what concerns behavior identification. Other works [3, 4] provide

methods to compare Markov chains relying on the mixing time

and by directly computing or estimating the stationary distribution.

However, the behavioral models we deal with are generated by

generic techniques, hence we have no guarantee for the existence

of a meaningful stationary distribution, as it requires specific prop-

erties to hold (see Section 3). An interesting work in the context of

detecting opponents is [7], where authors propose a framework for

stochastic games aimed at learning the policy of multiple unknown

adversaries drawn from different populations. We differ from [7]

as we explicitly take into account adversarial agents that may in-

tentionally perform some random or completely unrelated actions

in order to mask their real policy, injecting noise in the behavioral

model. Consequently, an observer agent can be deceived if it does

not consider such potential deviation during the analysis process.

An important domain where agents try to hide their real inten-

tions is cyber-security. Real malicious software agents often employ

anti-detection techniques that inject noise in their execution trace,

making difficult for defense systems to detect such threats. In our

empirical evaluation we consider also this real application context

as it could benefit from our proposed approach. Markov chains have

been employed before to represent malware models as well [1, 10].

Such methods are based on static analysis to extract the API call se-

quences, i.e., features are extracted without executing the program.

However, static analysis suffers from some known drawbacks such

as the difficulty in analyzing obfuscated or encrypted binaries and

the inability to analyze code downloaded and executed at runtime.

To overcome the mentioned problems, we focus on dynamic analy-

sis, that is best suited for an interactive approach as the one we aim

to. In this context, machine learning methods such as clustering or

classification are commonly used to analyze threats. A key point

in both schemes concerns how to extract informative features re-

sulting in good learning performance. A proposed solution often

recurring in literature is to use n-дrams [18, 26], i.e., sequences of
n API calls. Even though good results can be achieved with such

technique, a significant issue is the exponential space requirements

when n increases. Moreover, since n-grams are an approximation of

atomic behaviors embedded in malware, it is difficult to decide the

proper granularity degree of the information represented through

such feature type, i.e., how to select a proper value for n. Now,
classical dynamic analysis is passive, meaning that no interaction

happens during execution between the analyzer and the target

code [6, 14, 27]. As a consequence, malicious behaviors might be

overlooked since it is often the case that a specific action is required

to trigger them [15]. In recent years, there has been an increasing

interest in active dynamic analysis. In [25] authors propose a game-

theoretical framework called Active Malware Analysis (AMA), later

applied to API call graphs in [20]. The analysis is formalized as a

stochastic game where the analyzer tries to find the best action to

perform on the system in order to trigger malicious reactions by

the malware. In [19], AMA is improved by generating the malware

model at runtime, and representing it with multiple Markov chains.

The aim is to group the models with clustering techniques trying

to obtain the same partitioning of the ground truth in terms of mal-

ware families. The features extracted by AMA are the probability

values of transitioning between states of the Markov chains. Such

representation however, prevents to clearly identify small malicious

behaviors appearing within a bigger behavioral model or purposely

injected noise to deceive the analyzer. Indeed, AMA is designed to

be fast and so limited in time, hence it may not capture the behavior

that might arise only in the long-term, as we aim to do instead.

3 BACKGROUND
3.1 Markov chain tools
Markov chains are formal models to represent fully observable

states of a system with a random variable that changes over time

according to some probability distribution. The following defini-

tions and theorems, along with their proofs, can be found in [9].

Definition 3.1 (Markov chain). Let P be a k × k matrix with el-

ements {Pi j : i, j = 1, ...,k}. A random process (X0,X1, ...) with

finite space S = {s1, ..., sk } is a Markov chain with transition matrix

P if for all n, all i, j ∈ {1, ...,k} and all i0, ..., in−1 ∈ {1, ...,k} we



have

P(Xn+1 = j |X0 = i0, ...,Xn−1 = in−1,Xn = i) =

P(Xn+1 = j |Xn = i) = Pi j
(1)

Equation 3.1 expresses the Markov property, i.e., the conditional

probability distribution of the next state depends only on the current

one. Such assumption, even though not realistic in some cases, is

an acceptable approximation in many application domains as in

ours. From now onward we will identify a Markov chain with its

transition matrix and we will also make use of the corresponding

graph representation.

Definition 3.2 (Irreducible Markov Chain). A set of states is ir-

reducible if it is possible to go from each state to any other in an

arbitrary (finite) number of steps. A Markov chain is irreducible if

it consists of a single irreducible set.

Theorem 3.3 (StationaryDistribution). Given aMarkov chain

P , the vector π such that πP = π is the stationary distribution of P .
For any finite, irreducible Markov chain, π is unique.

The stationary distribution π represents the fraction of times a

Markov chain will spend in each state when the number of steps n
becomes large, i.e., as n →∞

Definition 3.4 (Absorbing Markov Chain). Given a Markov chain

P , a state si is absorbing if Pii = 1, otherwise it is transient. A

Markov chain is absorbing if at least one of its states is absorbing

and if from every transient state an absorbing one will be eventually

reached.

If we deal with an absorbingMarkov chain, it is usually preferable

to reorder the states in a canonical transition matrix in order to

clearly identify whether they are transient or absorbing. In our case,

the block decomposition given by the canonical form will be useful

to isolate long-term characteristics of a model we are interested in

studying.

Definition 3.5 (Canonical form of an absorbing Markov chain). If

an absorbing Markov chain P has n transient states and r absorbing
states, its transition matrix can be rewritten as

P =

[
Q R

∅ I

]
where Q is an n × n matrix of the transition probability between

the transient states, R is a n × r non-null matrix of the transition

probability from the transient to the absorbing states, ∅ is a r × n
null matrix, and I is a r × r identity matrix.

Lemma 3.6. For any absorbing Markov chain in canonical form

we have that Qk → 0 as k →∞.

Lemma 3.6 is useful to derive Theorems 3.7 and 3.8 and will be

extensively used in our methodology (Section 4).

Theorem 3.7 (Fundamental Matrix of an absorbing Markov

Chain). The fundamental matrix N of an absorbing Markov chain

P in canonical form is defined as

N = I +Q1 + ... +Qk =

∞∑
k=0

Qk = (I −Q)−1

where each entry Ni j represents the mean of the total number of

times that the chain is in a given transient state sj if starting from
the transient state si . The inverse of (I −Q) is guaranteed to exist for
every absorbing Markov chain.

Theorem 3.8 (Transient states probability).

H = (N − I )N−1dд

Each entry Hi j represents the probability of reaching transient state

sj starting from transient state si before the process is completely

absorbed. Ndд is the diagonal of N .

Note that the transient states probability (Theorem 3.8) is differ-

ent from the stationary distribution (Theorem 3.3). In this paper we

make use of the former in order to extract the long-term probability

values of going from each state to every other.

3.2 Active Malware Analysis
In our work we employ the AMA technique described in [19] to

extract the behavioral models of target agents that we then analyze

with our proposed methodology. The goal of the analyzer agent is

to learn as much information as possible on the target agent and

to generate the corresponding behavioral model, representing it

with Markov chains. The analyzer chooses its action to play at each

stage, from the set of all possible actions, with a Monte Carlo Tree

Search (MCTS) using an information-centric reward function based

on entropy. Intuitively, from the behavioral model generated so

far, the analyzer performs an action that is expected to lower the

entropy of such model the most, gaining information on the target

agent. The entropy is computed by using the probability values of

the Markov chain. A behavioral model is represented with a set of

Markov chains extracted from the observation of the target agent’s

actions. Each Markov chain represents the behavior of the target

agent w.r.t. a specific action executed by the analyzer agent. The

described technique takes its name from the application to malware

analysis, but the interesting concepts employed to select the best

actions to generate informative models based on what is observed

can be easily generalized to other domains.

4 PROPOSED METHODOLOGY
The problem we face in this work is the following: we are given a

set of known behavioral models K partitioned into a set of classes

C , and a set of unknown (unlabeled) behavioral models B of target

agents. All models are represented with Markov chains and have

been generated by observing the changes in the environment as

a consequence of the interaction between an analyzer agent and

a target agent. Our goal is then to assign the unknown elements

of B to the known classes of C . The solution we propose is to

employ supervised learning techniques to train a classifier for B
givenK . The proposed approach is explicitly designed for situations
where an agent reacts to stimuli provided by some other agent. This

is typical of adversarial environments and fits well with several

practical scenarios e.g., generic adversarial games, malware analysis,

but we also apply our methodology to non-adversarial settings such

as single player lottery game (see Section 5). Now, the probability

values of transitioning between every state that are specified by the

transition matrix of the Markov chains could be used as features to

train the classifier. However, such features may be unreliable as they



Figure 1: Markov chain with states in bold (S3, S4, S5) form-
ing a terminal SCC

only represent short-term transition probability, hence neglecting

important information about the long-term behavior of the agent.

Our approach instead, aims at extracting such long-term behavior

from every model by using the long-term transition probability.

This is performed by giving the process represented by the Markov

chain enough time to reach a fixpoint, i.e., when the long-term

transition probability would not change anymore from that point

onward. The long-term transition probability is important as it

represents the probability values of going from every state to any

another without considering the states that are crossed in between.

This is crucial to discard noise that may be present in the behavior

of the agent. For example, in a learning by demonstration setting

for a complex task, a teacher agent might make mistakes while

trying to follow its default policy, injecting noise in its execution

trace. A deliberately harmful scenario instead is when a malware

designer intentionally inserts fake API calls to deceive malware

detection tools. The approach presented in this work allows also to

exploit all the possible paths in the model, considering the presence

of cycles efficiently.

We propose to exploit some well known properties to compute

the long-term behavior of the agents by using the transient states

probability (Theorem 3.8). However, this approach can be used

only for absorbing Markov chains, but since our behavioral models

come from generic extraction techniques, there are no guarantees

that the corresponding Markov chains are absorbing (in our case

studies we are never given Markov chains already absorbing). The

proposed methodology is independent from how the Markov chain

was generated as no assumption is required about the meaning of

the states, or the structure of the Markov chain. In fact, we use

representations with different meanings for the three experimental

settings (see Section 5). To overcome this problem, we define a

procedure to transform any Markov chain into an absorbing one.

The goal is to design a transformation procedure that given as

input any Markov chain provides in output an absorbing Markov

chain, allowing to derive the long-term transition probability for

the original Markov chain we are interested in.

4.1 Absorbing Transformation
Algorithm 1 (AbsEnforcer) details our transformation procedure.

Given a Markov chain M of n states, a corresponding absorbing

Markov chain M ′ with д ≤ n transient states and an absorbing

state sa is created. Only the block matrix Q of the canonical form

(Definition 3.5) is returned since it is the only part used in the

Figure 2: Absorbing transformation applied to the Markov
chain of Figure 1. State S3 has been selected as sm for the
terminal SCC (S3, S4, S5)

subsequent computations. R (д × 1), I (1 × 1) and ∅ (1 × д) can
be easily derived knowing that exactly one absorbing state exists

in M ′ and that every row of M ′ must sum to 1 (if a state had an

outgoing probability value of 0 it would not reach an absorbing state,

henceM ′ would not be absorbing). The first step is to compute the

Strongly Connected Components (SCCs) of the Markov chain [22].

A SCC is a set of states and we distinguish between terminal and

non-terminal SCC. In Figure 1, states (S1, S2) form a non-terminal

SCC, whereas states (S3, S4, S5) form a terminal SCC.

Definition 4.1. We say a SCC A is terminal if there does not exist

a path from a state si ∈ A to a state sj < A, otherwise A is defined

as non-terminal.

Algorithm 1 AbsEnforcer

Require:
M -transition matrix of a Markov chain

Ensure:
Q - block matrix of new absorbing Markov chainM ′

1: sccs ← Tarjan(M) ▷ Find SCCs

2: for all T ∈ sccs , with T terminal do
3: sm ← s ∈R T ▷ Randomly select a merge state

4: for all si ∈ M , with si < T do
5: p ← 0

6: for all sj ∈ T do ▷ Remove edges and record weights

7: p ← p +Mi j
8: Mi j ← 0

9: Mim ← p ▷ Redirect edges to sm ∈ T

10: Merge T into the single state sm
11: Mmm ← 0 ▷ Connect sm to sa with P = 1

12: Q ← M
13: return Q

Given aMarkov chainM , for each terminal SCCT , AbsEnforcer
merges all the states si ∈ T into a single state sm ∈ T , connecting it
to an absorbing state sa with a new edge. Since we work with the

canonical form (Definition 3.5), and we imposeMmm = 0 (line 11),

the state sm is consequently connected to sa with probability value

1, i.e., in the R block matrix not explicitly represented. The update

of M (lines 4-9) redirects edges entering any state si ∈ T to the



designated merged state sm ∈ T before making it the only state of

T (line 10). Figure 2 shows an application example of AbsEnforcer

to the Markov chain in Figure 1.

In the following we prove that the output of AbsEnforcer is an

absorbing Markov chainM ′ w.r.t. a generic Markov chainM . This

is fundamental as it allows to apply Theorems 3.7 and 3.8 and then

to derive the long-term transition probability forM .

Theorem 4.2. The application of AbsEnforcer to a Markov chain

M always results in an absorbing Markov chainM ′

Proof. Every Markov chain M contains at least one terminal

SCC. Notice that a single state is a SCC since there is always a

0-length path from it to itself. AbsEnforcer creates a new Markov

chainM ′ by merging each terminal SCC T ∈ M into a chosen state

sm ∈ T , and redirecting all incoming edges of the removed states

toward sm . The definition of probability is maintained accumulating

the weights of all the edges redirected for each source state and

assigning the same sum of weights to the new edge toward sm
(lines 4-9). Additionally, sm is also connected to the absorbing state

sa with P = 1 as a consequence of removing any outgoing edge

from it (line 11). Every state si ∈ M
′
is either contained in a terminal

SCC T for M , or in a non-terminal SCC U for M . In the first case

si is a merged state sm ∈ M ′ for T . Consequently there exists a

direct edge in M ′ such that si = sm → sa . In the second case

there exists a path inM ′ such that si ⇝ sm , where sm is the result

of merging a terminal SCC of M . This is true because since the

number of states is limited, following an outgoing path fromU , a

terminal SCC will eventually be reached. Then si ⇝ sm → sa in

M ′. Therefore, every state ofM ′ is either the absorbing state sa or

a transient state that will eventually reach the absorbing state sa .
Hence, from Definition 3.4,M ′ is an absorbing Markov chain. □

The transformation described above, even though removing

states forming terminal SCCs, allows to derive the long-term tran-

sition probability for the original Markov chain, including all the

removed states. To show this we make use of Lemma 4.3. Also no-

tice that every state ofM is a transient state inM ′ (possibly merged

in a sm ).

Lemma 4.3. Within a terminal SCC T , the long-term transition

probability values of going from any state si ∈ T to any state sj ∈ T
converge to 1 as the number of steps n →∞.

Proof. By Definition 3.2, a terminal SCC T is an irreducible

Markov chain, meaning that it is possible to go from each state to

every other with non-zero probability. Moreover, being terminal,

there exists no outgoing path from T . Consequently, starting from

any state si ∈ T , the probability value of reaching any other state

sj ∈ T increases, approaching 1, as the number of steps n increases.

□

As from Theorem 4.2, AbsEnforcer produces an absorbing

Markov chain (specifically, its Q block matrix). Therefore, The-

orems 3.7 and 3.8 can be applied to its output in order to compute

the long-term transition probability as of Definition 4.4.

Definition 4.4 (Long-term transition probability). Given a Markov

chain M , the long-term transition probability value Li j of going
from state si ∈ M to state sj ∈ M can be computed from the

transient states probability H (Theorems 3.7 and 3.8) with

Q = AbsEnforcer(M) as follows

Li j (H ) =



1 if si and sj are in the same terminal SCC inM

0 if si is in a terminal SCC T inM and sj < T

Him if si is not in a terminal SCC inM and sj was

merged into a state sm inM ′

Hi j otherwise

The first case is a direct application of Lemma 4.3, whereas the

third one is a consequence: in the long-term, the probability value

of reaching a state of a terminal SCC T is the same of reaching

any other state of T , as in the long-term they can reach each other

with probability value 1. The second case is trivial: states within

a terminal SCC can only reach other states of the same SCC. The

fourth case is where no adjustment has to be made and the standard

transient states probability can be used.

4.2 Feature Extraction
The feature extraction process is tailored on our supervised learning

approach. As we aim at recognizing known behaviors, we require

a “blueprint” D as input, along with the actual model x from which

to extract the feature vector. The blueprint is used to retrain from

x , only the long-term transition probability values between the

states we are interested in. Hence, the only information that D
needs to contain are states and corresponding edges between states.

The probability values on the edges (for D) are not required since

they are not used in the feature extraction process. Essentially, the

blueprintD is a “shape” onwhich to project the long-term transition

probability extracted from a model x to analyze.

Algorithm 2 Extractor

Require:
D - G(V ,E) blueprint model with k = |V |
M - Markov chain of model x

Ensure:
F - feature vector

1: Q ← AbsEnforcer(M) ▷ Algorithm 1

2: N ← (I −Q)−1 ▷ Theorem 3.7

3: H ← (N − I )N−1dд ▷ Theorem 3.8

4: D ′ ← k × k empty matrix

5: for all edges (si , sj ) ∈ E do
6: if states si , sj exist also inM as sv , su then
7: D ′i j ← Lvu (H ) ▷ Definition 4.4

8: return Flatten(D ′)

Algorithm 2 (Extractor) details the feature extraction proce-

dure for an unknown model x , given a blueprint D. The first step is

to apply AbsEnforcer to transform M into an absorbing Markov

chainM ′, obtaining its block matrix Q (line 1). Now we can apply

Theorems 3.7 and 3.8 to Q as second step, retrieving the transient

states probability values H of going from each state to every other

forM ′ (lines 2-3). The last step is to extract the long-term transition

probability (Definition 4.4) from H , for the states of x that also ap-

pear in the blueprint D (lines 5-7). In our experiments we label the



states of the models we generate in a consistent manner, therefore,

to check if a state of D exists also in x we perform a simple label

comparison (line 6).

We can now solve our classification problem by training a clas-

sifier using the features extracted by Extractor. We first create

blueprints for every class in C . These can be manually crafted by

a domain expert or, as we did in the experiments, can simply be

created from the known models K by choosing representatives

for the classes and retraining their graphs (states and edges, no

probability values). It is also possible to select more than one rep-

resentative per class and to perform a merge to obtain a single

blueprint for such class. Then all the blueprints for the classes

in C are merged together to obtain a single blueprint D. Succes-
sively, we train a classifier extracting the training features from

each d ∈ K by calling Extractor(D,Md ) and using the knowledge

of which class c ∈ C , d belongs to. We then classify the unknown

behavioral models x ∈ B by extracting their features, i.e., by calling

Extractor(D,Mx ), and then querying the trained classifier. Md
andMx are the transition matrices of d and x respectively.

5 EMPIRICAL EVALUATION
We divide the empirical analysis in two types of experiments: in the

first one we focus on agents interacting within classical games, i.e.,

the iterated Prisoner’s Dilemma [17] and a repeated lottery game,

while in the second one we analyze real Android malware trying

to identify malicious behaviors. The first experimental setting is

interesting as it shows that our approach can be used in a generic

domain where multiple agents interact and/or observe the effect on

the environment of each other actions. The second experimental

setting instead is crucial in real world IT defense systems. Fig-

ure 3 shows an overview of the empirical evaluation we conducted,

where an analyzer agent performs the Monte Carlo Analysis (MCA)

described in [19] to generate the behavioral models of different

agents, e.g., players of classical games, malicious software agents.

As explained in Section 4, the specific technique employed to gen-

erate the behavioral models is independent from our methodology

used to analyze them. We chose [19] as it is particularly suited to

obtain informative behavioral models within interactive settings.

From such models we apply our approach to extract the long-term

transition probability values as informative features, and compare

the learning quality w.r.t. other different features proposed in lit-

erature, i.e., 1-step transition probabilities (the classical transition

matrix) [19] and n-grams [5, 17].

We design our analyzer agent (a player in the case of the Pris-

oner’s Dilemma) to employ the MCA technique of [19] for the inter-

action, i.e., to select the actions to perform in order to gain as much

information as possible on the adversary, trying to minimize the

entropy of the behavioral model being generated. Following [19],

a behavioral model is represented with a set of Markov chains ex-

tracted from the observation of an agent’s actions (see Section 3.2).

For all the experiments we trained a Linear SVM performing a k-
fold cross validation with k = 5. Classification quality is evaluated

using precision, recall, and F1-score. Since each behavioral model

encodes multiple Markov chains, Extractor is applied to each

of them individually in order to extract a feature vector for each

Markov chain, and then performing a concatenation. Figure 4 for

MCA
Android
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Models
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Extract Extractor
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Figure 3: Overview of our methodology for behavioral anal-
ysis. The dashed area contains the method of [19], whereas
bold text represent our contribution

example, encodes two different Markov chains, i.e., one for action

C and one for action D.

5.1 Classical Games
In the iterated Prisoner’s Dilemma, two players are given the choice

to cooperate (C) or to defect (D) in a repeated interaction of the same

stage game. While there are various approaches to find strategies

that optimize agents’ payoffs studying equilibria [16], here we focus

on the identification of known strategies only by observing the in-

teraction between players. Hence, we design 6 strategies previously

used in literature [5, 17] for player B (target agent), while player A
(analyzer agent) chooses its actions following the MCA technique

of [19]. The six strategies are: i) tit-for-tat, ii) retaliation, iii) ran-

dom, iv) always cooperate, v) always defect, vi) mixed. Strategy i)

always plays the action played by the adversary in the last game,

whereas strategy ii) cooperates until the adversary defects for the

first time and then defects forever. For strategy vi), cooperate and

defect are chosen with 4/5 and 1/5 probability values respectively.

States are labeled with the joint actions that made the game reach

such state, whereas edges are labeled with the action of player A
that triggered such transition. Figure 4 shows an example of an

observed random behavioral model for player B. States are repre-
sented with the joint actions of the players: CD for example is the

result of actions (cooperate, defect) by player A and B respectively.

Every strategy has been played 20 times in an iterated Prisoner’s

Dilemma of length 100, obtaining 120 behavioral models for player

B. The aim then is, given such models, to classify them over the

6 known strategies (classes). The blueprint D has been created se-

lecting random representatives from each strategy and merging all

their graphs together. Table 1 reports the evaluation of the process.

Results show that strategies i), ii), iv) and v) are perfectly identified

by our method. However, since strategies iii) and vi) differ only in

the probability values they assign to actions cooperate and defect,

if the Markov chain states are highly connected, e.g., if they form a

single SCC, the long-term behavior tends to flatten the differences

between transition probability values, making harder to distinguish

behaviors in the long-term compared to the short. This is a limita-

tion of our approach that arises in the pathological case of models

composed only by few terminal SCCs. However, this is unlikely to

happen with more complex models and real world scenarios such

as in our next experiments.



Figure 4: Example of an observed random behavioral model
for player B in the iterated Prisoner’s Dilemma

Table 1: Player’s strategy identification for the iterated Pris-
oner’s Dilemma

Strategy Precision Recall F1-score

i) Tit-for-tat 1.00 1.00 1.00

ii) Retaliation 1.00 1.00 1.00

iii) Random 1.00 0.65 0.79

iv) v) Always C/D 1.00 1.00 1.00

vi) Mixed 0.74 1.00 0.85

Total 0.96 0.94 0.94

As second evaluation setting, we define a custom non-adversarial

repeated lottery game [12] as follows: at every iteration, a player

chooses between a safe (S) and a risky (R) lottery, accumulating the

reward at each stage. S gives reward 4 with P = 0.9 and halves the

current accumulated reward with P = 0.1. R gives a reward of 8

with P = 0.5, halves the current accumulated reward with P = 0.4,

and sets it to 0 with P = 0.1. Figure 5 shows an example of an ob-

served behavioral model for the repeated lottery game. The internal

state of the player is assumed to be observable and containing the

value of the current accumulated reward. Such value is used to label

the states of the model, whether edges instead are labeled with the

lottery chosen by the player. In this case, behavioral models are

generated by the analyzer only by observing the player agent, i.e.,

no interaction is involved between the two. We design some similar

strategies w.r.t. the iterated Prisoner’s Dilemma, i.e., i) always S ,
ii) always R, iii) R until loss (always R until the first loss happens,

S from that stage onward), iv) S until loss (always S until the first

loss happens, R from that stage onward), v) random, vi) mixed (S
with P = 4/5, R with P = 1/5). Additionally, we also design more

complex behaviors where R is played when the current accumu-

lated reward is within a specific range [a,b], S otherwise: vii) R
between [10, 20], viii) R between [10, 50], ix) R between [20, 40].

Every strategy has been played 20 times in a repeated lottery game

of length 500, obtaining 180 behavioral models for the player agent.

The aim, again, is to classify such models over the 9 known strate-

gies (classes). This experiment is different from the previous one

as the generated behavioral models are much bigger (up to 1913

states) and contain a various number of terminal and non-terminal

SCCs, resulting in a comprehensive evaluation setting for our ap-

proach. Also in this case, the blueprint D has been created selecting

random representatives from each strategy and merging all their

Figure 5: Example of an observed behavioral model in the
repeated lottery

Table 2: Player’s strategy identification for the repeated lot-
tery game

Strategy Precision Recall F1-score

i) Always S 0.86 0.90 0.88

ii) Always R 0.95 1.00 0.98

iii) R until Loss 0.89 0.85 0.87

iv) S until Loss 1.00 0.95 0.97

v) Random 1.00 0.95 0.97

vi) Mixed 0.95 1.00 0.97

vii) viii) ix) R between [a, b] 1.00 1.00 1.00

Total 0.96 0.96 0.96

graphs together. Table 2 reports the results of the process, where

it is visible that the strategies are overall well classified. We no-

tice that strategies v) and vi) are identified more clearly w.r.t. to

Table 1. As we mentioned before, in bigger and realistic models,

the flattening problem of the long-term probabilities is much less

prominent. Strategies i) and iii), and strategies ii) and iv) instead,

can be confused with each other depending on when the first loss

happens during the game. Strategy iv) for example becomes exactly

strategy ii) after the first loss. If this change happens at the very

beginning of a game, the two strategies become indistinguishable.

5.2 Malware Analysis
In the malware analysis application scenario, the first step to an-

alyze an unknown software is to decide whether it could be ma-

licious [1, 10]. In this case, the type of countermeasures that an

analyzer should take depends on the type of malicious applications.

Detecting whether a malicious behavior shares common character-

istics with known malware families is extremely important to take

effective countermeasures. Notice that in a malware behavioral

model, a state is not malicious by itself. It is the composition of

multiple states (how they are connected together) that can make a

behaviormalicious overall. A key interesting aspect is that advanced

malware inject noise, e.g., sequences of random or non-dangerous

actions, in their behavior as an anti-detection mechanism, hence

creating an extremely challenging scenario for the analyzers. An-

other complication for the analyzer comes from small malware

injected into bigger, benign applications, e.g., a password stealer

inserted into the code of a game. In this case, the major portion of

the behavioral model corresponds to actions belonging to the be-

nign gaming application, whereas the few related to the password

stealing process appear within them.



Figure 6: Malware model example

From the dataset collected in [23], we selected approximately

1200 malware samples, consisting of 23 families, that better suit an

interactive analysis such as AMA, i.e., reacting to user’s actions. An-

droRAT and GoldDream families are an example of small malware

injected into bigger applications (games and others). They steal per-

sonal information such as contact numbers, sms and call contents.

Gorpo and Kemoge families instead employ anti-detection tech-

niques such as dynamically loading the malicious code at runtime

and performing unrelated actions to intentionally inject noise. The

other families reported are of classical malware, i.e., not injected

and without advanced anti-detection techniques. Models obtained

by analyzing this dataset represent a concrete application context

on real data that is crucial for cyber-security. We compare our ap-

proach with the MCA presented in [19] where the same process is

used to generate the malware models (the difference lies in the fea-

ture extraction as summarized in Figure 3). In this experiment the

internal state of the malware agent is not observable, consequently

states are represented with the effect of the agent’s actions on the

environment (API calls). Figure 6 shows an example of malware

model generated by MCA, where states are labeled with API calls

and edges connect two consecutive API calls observed in a mal-

ware execution trace. As for the previous representations, edges

are labeled with transition probabilities conditioned by analyzer

actions. We also compare with the n-gram features extensively used

in literature [18, 26]. As suggested in such works we experimented

with SVM and K-Nearest Neighbors (KNN) classifiers using gram

lengths in the range [1, 4]. To perform a fair comparison, we extract

the n-grams directly from the same execution traces used by the

other twomethods, i.e., MCA and ours. Regarding our approach, the

blueprint D has been generated merging the graphs of the represen-

tatives for each family. Specifically, if the standalone (not injected)

or clean (without anti-detection mechanisms) version of a malware

for a family is known, its behavioral model is used as representative

of such family, otherwise random behavioral models are chosen

from the same family.

Table 3 reports our empirical best results obtained using SVMs

and gram lengths of 1 and 4. In the interest of space we report only

a subset of families, but the considerations made hold for the entire

dataset. The two methods using features extracted from the Markov

chains, i.e., MCA and the one proposed in this work, have overall

better results when compared to n-grams. Using Markov chain

transition probability values as features allows to better capture

distinctive characteristics of the malware dynamics, improving the

classifier performance. Moreover, when comparing MCA to our

Table 3: Malware classification comparison F1-score

Family 3-grams 4-grams MCA Ours

AndroRAT 0.83 0.86 0.84 0.94
GoldDream 0.88 0.92 0.92 0.95
Gorpo 0.77 0.66 0.81 0.93
Kemoge 0.58 0.57 0.44 0.92
Cova 0.91 0.92 0.94 0.97
FakeAV 0.89 0.89 0.89 0.89

Kuguo 0.87 0.85 0.93 0.90

SpyBubble 0.94 0.94 0.63 0.95
Winge 0.78 0.72 0.88 0.86

approach we can notice that the performance of the classifier are

always comparable and most of the time are significantly better in

favor of ours. In more detail, our technique performs significantly

better for malware that are injected into benign applications (An-

droRAT and GoldDream) or for malware employing anti-detection

techniques preforming a lot of noisy actions (Gorpo and Kemoge).

This confirms that using the long-term transition probability values

as features allows to effectively removes noise, significantly improv-

ing the classification performances for such families. With classical

malware (lower half of Table 3) instead, our approach does not con-

sistently provide significant gains and is comparable to the others.

This suggests that our proposed methodology should complement

existing techniques to provide benefits in specific and important

situations, e.g., malware injection and countering anti-detection

mechanisms.

6 CONCLUSIONS
We propose the use of Markov chains to identify known behav-

iors of intelligent agents acting within uncertain environments.

More in detail, we employ classification to solve the problem and

we use the long-term transition probability values as features. We

design a transformation to enforce the absorbency property for

Markov chains, enabling the computation of such features for

generic Markov chains. We evaluate our methodology in three

domains: two player games, a single player repeated lottery game,

and malware analysis. The empirical evaluation shows that our

approach provides informative features to successfully identify

known behaviors. In particular, for the malware analysis scenario

this method allows to significantly outperform state-of-the-art tech-

niques when considering real-world injected malware samples and

advanced anti-detection mechanisms. This work opens several fu-

ture directions, including the application to different domains of

cyber-security, e.g., web-based attacks, and beyond, e.g., malicious

or anomalous behaviors of cyber-physical systems and drones.
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