302 research outputs found

    Heavy metal/toxins detection using electronic tongues

    Get PDF
    FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOThe growing concern for sustainability and environmental preservation has increased the demand for reliable, fast response, and low-cost devices to monitor the existence of heavy metals and toxins in water resources. An electronic tongue (e-tongue) is a multisensory array mostly based on electroanalytical methods and multivariate statistical techniques to facilitate information visualization in a qualitative and/or quantitative way. E-tongues are promising analytical devices having simple operation, fast response, low cost, easy integration with other systems (microfluidic, optical, etc) to enable miniaturization and provide a high sensitivity for measurements in complex liquid media, providing an interesting alternative to address many of the existing environmental monitoring challenges, specifically relevant emerging pollutants such as heavy metals and toxins.73119FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULOCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOSem informaçã

    Spectral Band Selection for Ensemble Classification of Hyperspectral Images with Applications to Agriculture and Food Safety

    Get PDF
    In this dissertation, an ensemble non-uniform spectral feature selection and a kernel density decision fusion framework are proposed for the classification of hyperspectral data using a support vector machine classifier. Hyperspectral data has more number of bands and they are always highly correlated. To utilize the complete potential, a feature selection step is necessary. In an ensemble situation, there are mainly two challenges: (1) Creating diverse set of classifiers in order to achieve a higher classification accuracy when compared to a single classifier. This can either be achieved by having different classifiers or by having different subsets of features for each classifier in the ensemble. (2) Designing a robust decision fusion stage to fully utilize the decision produced by individual classifiers. This dissertation tests the efficacy of the proposed approach to classify hyperspectral data from different applications. Since these datasets have a small number of training samples with larger number of highly correlated features, conventional feature selection approaches such as random feature selection cannot utilize the variability in the correlation level between bands to achieve diverse subsets for classification. In contrast, the approach proposed in this dissertation utilizes the variability in the correlation between bands by dividing the spectrum into groups and selecting bands from each group according to its size. The intelligent decision fusion proposed in this approach uses the probability density of training classes to produce a final class label. The experimental results demonstrate the validity of the proposed framework that results in improvements in the overall, user, and producer accuracies compared to other state-of-the-art techniques. The experiments demonstrate the ability of the proposed approach to produce more diverse feature selection over conventional approaches

    Applicability domains of neural networks for toxicity prediction

    Get PDF
    In this paper, the term "applicability domain" refers to the range of chemical compounds for which the statistical quantitative structure-activity relationship (QSAR) model can accurately predict their toxicity. This is a crucial concept in the development and practical use of these models. First, a multidisciplinary review is provided regarding the theory and practice of applicability domains in the context of toxicity problems using the classical QSAR model. Then, the advantages and improved performance of neural networks (NNs), which are the most promising machine learning algorithms, are reviewed. Within the domain of medicinal chemistry, nine different methods using NNs for toxicity prediction were compared utilizing 29 alternative artificial intelligence (AI) techniques. Similarly, seven NN-based toxicity prediction methodologies were compared to six other AI techniques within the realm of food safety, 11 NN-based methodologies were compared to 16 different AI approaches in the environmental sciences category and four specific NN-based toxicity prediction methodologies were compared to nine alternative AI techniques in the field of industrial hygiene. Within the reviewed approaches, given known toxic compound descriptors and behaviors, we observed a difficulty in being able to extrapolate and predict the effects with untested chemical compounds. Different methods can be used for unsupervised clustering, such as distance-based approaches and consensus-based decision methods. Additionally, the importance of model validation has been highlighted within a regulatory context according to the Organization for Economic Co-operation and Development (OECD) principles, to predict the toxicity of potential new drugs in medicinal chemistry, to determine the limits of detection for harmful substances in food to predict the toxicity limits of chemicals in the environment, and to predict the exposure limits to harmful substances in the workplace. Despite its importance, a thorough application of toxicity models is still restricted in the field of medicinal chemistry and is virtually overlooked in other scientific domains. Consequently, only a small proportion of the toxicity studies conducted in medicinal chemistry consider the applicability domain in their mathematical models, thereby limiting their predictive power to untested drugs. Conversely, the applicability of these models is crucial; however, this has not been sufficiently assessed in toxicity prediction or in other related areas such as food science, environmental science, and industrial hygiene. Thus, this review sheds light on the prevalent use of Neural Networks in toxicity prediction, thereby serving as a valuable resource for researchers and practitioners across these multifaceted domains that could be extended to other fields in future research

    A modeling study with an artificial neural network: developing estimation models for the tomato plant leaf area

    Get PDF
    The leaf area measurement is an important parameter in understanding the growth and physiology of a plant. Therefore, this study aimed to develop the best leaf area estimation model for tomato plants grown in plastic greenhouse conditions. The artificial neural network (ANN) and regression analysis techniques were used in the formation of a leaf area estimation model by using the leaf width and leaf length measurements determined by the linear measurement method. The plant material for the study consisted of 420 leaf samples of the Typhoon F1 tomato type grown in plastic greenhouse conditions. In the comparison of the created models according to both methods, the criteria of selecting low values for the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE), and high value for the determination coefficient (R2 ) were taken into account, and the best estimation models were determined. In the comparison made according to these criteria, it was concluded that the error values of the ANN model [R2 = 0.96, RMSE = 3.30, MAE = 1.94, and MAPE = 0.05] were lower than those of the regression model [R2 = 0.92, RMSE = 4.71, MAE = 3.31, and MAPE = 0.08], and that the ANN method provided a better fit to the actual values; therefore, the ANN model can be used as an alternative method in estimating the leaf area.The leaf area measurement is an important parameter in understanding the growth and physiology of a plant. Therefore, this study aimed to develop the best leaf area estimation model for tomato plants grown in plastic greenhouse conditions. The artificial neural network (ANN) and regression analysis techniques were used in the formation of a leaf area estimation model by using the leaf width and leaf length measurements determined by the linear measurement method. The plant material for the study consisted of 420 leaf samples of the Typhoon F1 tomato type grown in plastic greenhouse conditions. In the comparison of the created models according to both methods, the criteria of selecting low values for the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE), and high value for the determination coefficient (R2 ) were taken into account, and the best estimation models were determined. In the comparison made according to these criteria, it was concluded that the error values of the ANN model [R2 = 0.96, RMSE = 3.30, MAE = 1.94, and MAPE = 0.05] were lower than those of the regression model [R2 = 0.92, RMSE = 4.71, MAE = 3.31, and MAPE = 0.08], and that the ANN method provided a better fit to the actual values; therefore, the ANN model can be used as an alternative method in estimating the leaf area

    Smart Approach for the Design of Highly Selective Aptamer-Based Biosensors

    Get PDF
    Aptamers are chemically synthesized single-stranded DNA or RNA oligonucleotides widely used nowadays in sensors and nanoscale devices as highly sensitive biorecognition elements. With proper design, aptamers are able to bind to a specific target molecule with high selectivity. To date, the systematic evolution of ligands by exponential enrichment (SELEX) process is employed to isolate aptamers. Nevertheless, this method requires complex and time-consuming procedures. In silico methods comprising machine learning models have been recently proposed to reduce the time and cost of aptamer design. In this work, we present a new in silico approach allowing the generation of highly sensitive and selective RNA aptamers towards a specific target, here represented by ammonium dissolved in water. By using machine learning and bioinformatics tools, a rational design of aptamers is demonstrated. This "smart" SELEX method is experimentally proved by choosing the best five aptamer candidates obtained from the design process and applying them as functional elements in an electrochemical sensor to detect, as the target molecule, ammonium at different concentrations. We observed that the use of five different aptamers leads to a significant difference in the sensor's response. This can be explained by considering the aptamers' conformational change due to their interaction with the target molecule. We studied these conformational changes using a molecular dynamics simulation and suggested a possible explanation of the experimental observations. Finally, electrochemical measurements exposing the same sensors to different molecules were used to confirm the high selectivity of the designed aptamers. The proposed in silico SELEX approach can potentially reduce the cost and the time needed to identify the aptamers and potentially be applied to any target molecule

    Deep Learning-Based Approaches for Contactless Fingerprints Segmentation and Extraction

    Full text link
    Fingerprints are widely recognized as one of the most unique and reliable characteristics of human identity. Most modern fingerprint authentication systems rely on contact-based fingerprints, which require the use of fingerprint scanners or fingerprint sensors for capturing fingerprints during the authentication process. Various types of fingerprint sensors, such as optical, capacitive, and ultrasonic sensors, employ distinct techniques to gather and analyze fingerprint data. This dependency on specific hardware or sensors creates a barrier or challenge for the broader adoption of fingerprint based biometric systems. This limitation hinders the widespread adoption of fingerprint authentication in various applications and scenarios. Border control, healthcare systems, educational institutions, financial transactions, and airport security face challenges when fingerprint sensors are not universally available. To mitigate the dependence on additional hardware, the use of contactless fingerprints has emerged as an alternative. Developing precise fingerprint segmentation methods, accurate fingerprint extraction tools, and reliable fingerprint matchers are crucial for the successful implementation of a robust contactless fingerprint authentication system. This paper focuses on the development of a deep learning-based segmentation tool for contactless fingerprint localization and segmentation. Our system leverages deep learning techniques to achieve high segmentation accuracy and reliable extraction of fingerprints from contactless fingerprint images. In our evaluation, our segmentation method demonstrated an average mean absolute error (MAE) of 30 pixels, an error in angle prediction (EAP) of 5.92 degrees, and a labeling accuracy of 97.46%. These results demonstrate the effectiveness of our novel contactless fingerprint segmentation and extraction tools

    2018 - The Twenty-third Annual Symposium of Student Scholars

    Get PDF
    The full program book from the Twenty-third Annual Symposium of Student Scholars, held on April 19, 2018. Includes abstracts from the presentations and posters.https://digitalcommons.kennesaw.edu/sssprograms/1020/thumbnail.jp

    Computational Intelligence in Healthcare

    Get PDF
    This book is a printed edition of the Special Issue Computational Intelligence in Healthcare that was published in Electronic
    corecore