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In this dissertation, an ensemble non-uniform spectral feature selection and a 

kernel density decision fusion framework are proposed for the classification of 

hyperspectral data using a support vector machine classifier. Hyperspectral data has more 

number of bands and they are always highly correlated. To utilize the complete potential, 

a feature selection step is necessary. In an ensemble situation, there are mainly two 

challenges: (1) Creating diverse set of classifiers in order to achieve a higher 

classification accuracy when compared to a single classifier. This can either be achieved 

by having different classifiers or by having different subsets of features for each classifier 

in the ensemble. (2) Designing a robust decision fusion stage to fully utilize the decision 

produced by individual classifiers. 

This dissertation tests the efficacy of the proposed approach to classify 

hyperspectral data from different applications. Since these datasets have a small number 

of training samples with larger number of highly correlated features, conventional feature 

selection approaches such as random feature selection cannot utilize the variability in the 

correlation level between bands to achieve diverse subsets for classification. In contrast, 



 

 

 

 

 

  

  

 

the approach proposed in this dissertation utilizes the variability in the correlation 

between bands by dividing the spectrum into groups and selecting bands from each group 

according to its size. The intelligent decision fusion proposed in this approach uses the 

probability density of training classes to produce a final class label. The experimental 

results demonstrate the validity of the proposed framework that results in improvements 

in the overall, user, and producer accuracies compared to other state-of-the-art 

techniques. The experiments demonstrate the ability of the proposed approach to produce 

more diverse feature selection over conventional approaches. 
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INTRODUCTION 

1.1 Background 

Duda et al [1] define pattern recognition as “the act of taking in raw data and 

making an action based on the ‘category’ of the pattern has been crucial for the survival 

of human beings, and over the past tens of millions of years humans have evolved with 

highly sophisticated neural and cognitive systems for such tasks”. In the past few 

decades, researchers continue to develop algorithms that mimic neural and cognitive 

evolutions that humans undergone. Such computer algorithms are known as machine 

learning algorithms. Arthur Samuel [2] defined machine learning as the “Field of study 

that gives computers the ability to learn without being explicitly programmed”. Modern 

day machines are intelligent, adaptive, and they can improve the performance through 

experiences. One of the decisive component in any intelligent system is the underlying 

learning algorithm. The applications of such algorithms are primarily in the fields of 

science and engineering. From automated speech recognition [3], fingerprint recognition 

[4], face recognition [5], and many other applications, it is very important to have a 

reliable and robust learning algorithms. 

Learning algorithms can be broadly categorized as supervised and unsupervised. 

The former requires class labels or training samples to learn appropriate class conditional 

models and the latter assigns a label automatically based on the natural closeness among 
1 



 

 

   

 

  

 

 

  

 

  

 

 

  

 

 

 

 

  

  

samples with respect to some underlying metric [6]. In situations where class labels are 

not available, unsupervised approaches can be used. In supervised learning, a known set 

of training samples are used to learn a model that better represents its global structure, 

then, this model is used for predicting new samples/classes for new data or forecasting. 

Supervised learning problems can be further categorized as classification and 

regression. Regression has strong roots in statistical analysis but is integral part of 

supervised machine learning paradigms. Regression is mainly used for estimating the 

relationship among the variables. Classification techniques are very much part of 

machine learning where a label is assigned to an incoming unknown sample. Both 

classification and regression are used for predicting the category of an unknown sample 

from the experience of learning from known samples. There are two major differences 

between them. First, in the case of classification, the category or label is discrete whereas 

in regression it is continuous. Second, the regression can be used for forecasting analysis 

along with predicting the category of an unknown variable. In most of the remote sensing 

applications and especially with hyperspectral data, supervised techniques are of 

tremendous interest [7]. 

Supervised learning algorithms are very useful for performing the analysis on 

remotely sensed data. Remote sensing can be described as the process of obtaining 

information about an object or phenomenon without making any physical contact [8]. 

The applications of remotely sensed data are huge in Earth observation [9], robotic 

systems [10], medicine [11], and food security and safety [12].  In these applications, 

generally, a spectral imaging is employed to obtain the information about the object of 

interest. If the captured spectral image contains three bands that are visible to human eyes 
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such as red, green, and blue, we call it visible image or a photograph. It is possible to 

extend the bands beyond the visible spectrum. It is also possible to capture any number of 

bands in the wide electromagnetic (EM) spectrum. Based on the number of bands, the 

image can be called multi-spectral or hyperspectral. In case of multi-spectral images, the 

number of bands is less than ten whereas hyperspectral images can have hundreds or even 

thousands of bands. 

Hyperspectral imagery (HSI) provides a detailed description of materials ranging 

from visible to infrared regions of the electromagnetic spectrum. Such a wide spectral 

range of information has the potential to yield higher classification accuracies compared 

to that of multi-spectral counterpart. In HSI, the correlations between successive bands 

are often very high. So, the information contained in successive bands can be redundant.  

The key to the design of a powerful classification system lies in extracting pertinent 

features from the high-dimensional data and employing classifiers to exploit those 

features. In HSI, every pixel has multiple reflectance values corresponding to a wide 

range of bands. So, the classification problem becomes very high dimensional, and it 

requires a very large number of training samples for reasonable estimation of class 

conditional distributions. An increase in the dimensionality results in a decrease in the 

generalization capability and this can cause poor classification performance. In the 

literature, this is often referred to as Hughes phenomenon [13]. 

The Hughes phenomenon has been well studied for classifiers built for HSI. 

Statistical classification methods, in particular Gaussian Maximum Likelihood (ML), a 

traditional supervised pattern classification approach, often fails to classify HSI data 

accurately because of the high dimensionality of features and limited ground truth 
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availability [14]. When the ratio of the number of samples to the number of bands in HSI 

is small, a parametric approach, such as the ML classifier, suffers from Hughes 

phenomenon and as a result, the classification accuracy is driven down. This happens 

mainly due to the inaccurate estimate of statistics such as the mean and covariance that 

play a major role in the design of statistical classifiers. For a fixed number of samples in a 

training set, this ratio decreases as the number of bands in HSI increases. An increase in 

the number of samples results in an increase in the accuracy up to a point after which the 

accuracy starts decreasing. So, the Hughes effect may not occur when the sample size is 

increased appropriately with an increase of additional bands. Similarly, for a training set 

with a large number of samples such that even all the bands in a HSI is used, The Hughes 

phenomenon may not be observed at all. In a practical scenario, acquiring a large number 

of training samples is not possible due to the difficulties and expense incurred in time and 

money in acquiring them. More importantly, it is expensive to collect large number of 

labeled samples (ground truth) and the process is highly time-consuming. 

Various approaches can be employed to alleviate this effect. The commonly used 

approach is to apply some form of feature reduction prior to classification. Feature 

reduction techniques for HSI can be broadly classified into two categories: feature 

extraction and feature selection. With feature extraction, the HSI data is transformed in a 

way that represents the same information in a smaller number of features [15]. With 

feature selection, a subset of the original features is selected in such a way that the subset 

preserves the discrimination capability of the original data [16]. In statistical 

classification approaches on HSI, classifiers are usually preceded by feature reduction 

techniques such as Principal Component Analysis (PCA) and Fisher’s Linear 
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Discriminant Analysis (LDA). The above techniques are well studied and they are widely 

used in the pattern recognition community. However, for HSI classification problems, 

PCA will discard useful discrimination information if the vectors are oriented in the 

directions of a small global variance [17]. LDA, on the other hand, is very good at 

preserving the discrimination information but fails under multi-model class distributions 

[18]. The common issue with PCA and LDA is that they suffer from the problem of ill 

conditioned covariance and scatter matrices when the number of training samples is 

insufficient. This affects the efficiency of learning true projections. The feature selection 

techniques are sub-optimal. Hence, it does not fully exploit the rich spectral information 

available in HSI. 

Another approach to alleviate the Hughes effect is to use classifiers that are 

insensitive to this phenomenon. Kernel based techniques such as Support Vector 

Machines (SVM) are widely recognized as being efficient approaches to classify HSI 

without being concerned about the Hughes effect [19], [20]. Unlike the statistical 

algorithms such as ML, kernel based classification algorithms can learn the data without 

assuming any underlying statistical distribution. Kernel based algorithms were also 

reported to perform better than statistical techniques such as ML in terms of the overall 

accuracy and class accuracies. These algorithms have the ability to handle high 

dimensional data, even with only a small number of training samples. Although this is 

true to some extent, there is an uncertainty about the role of feature reduction for SVMs 

[21], [22]. This area of research is one of the main focuses of this dissertation. 

SVM is based on structural risk minimization and it exploits a margin-based 

criterion. Other approaches are based on empirical risk, where the aim is to minimize the 
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misclassification error on the training set. SVM guarantees the smallest possibility of 

misclassifying an unknown data sample randomly drawn from a fixed but unknown 

probability distribution. Furthermore, SVM seeks to find an optimal hyperplane that 

maximizes the margin between classes using only a small number of training points. 

These training points are called support vectors. It uses only a small number of training 

samples and the results of some studies may suggest that SVM may not be affected by an 

increase in the number of features. This alleviates the problem of the Hughes effect to 

some extent. Other studies have shown that the classification accuracy of SVMs can be 

increased by reducing the number of features [22]. Feature reduction has impacts on the 

speed of the classifier as well. It will also provide advantages in terms of low memory 

usage. Feature reduction for SVM, therefore, is a useful analysis tool both in terms of the 

accuracy and overall performance of the classifier. A detailed discussion of the SVM is 

provided in Section 2.1.2. 

There is a growing interest among the research community in using multiple 

learners to classify the HSI data [23]. This generally yields an improved accuracy when 

compared to single learners provided that the diversity among the learners is established. 

The decisions of individual learners are then used to compute the final decision. This 

multi classification technique is often referred to as ensemble classification. In this work, 

a non-uniform random feature selection technique is proposed that employs a kernel 

density based decision fusion to exploit the rich spectral information contained in HSI. 

The three key problems addressed in this research are: 

1. Design an algorithm to create a diverse feature subset capable of providing 

good classification performance for a variety of applications. 
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2. Design a decision fusion technique that uses information about the 

separation of class distributions in the training data. This enables the 

decision fusion technique to assign weights to decisions of individual 

learners in an efficient way. 

3. Finding a suitable diversity measure for HSI data in a multi-classifier 

setup with SVM. This further increases the utilization of rich spectral 

information available in HSI. 

1.2 Motivation behind the proposed work – Spectral band selection techniques 
for classifying hyperspectral data using ensemble kernel based classifiers 

Classifying hyperspectral images is a challenging problem because of the high 

dimensionality of the feature space and typically a very high degree of correlation 

between successive features. Therefore, it is important to make use of such information 

effectively in a manner that does not result in reduced performance. In order for a 

classifier to perform well, feature selection is an important step –particularly more so 

when the feature space is very high dimensional and the amount of training data available 

is limited (as is the case with hyperspectral images). In the last decade, Support Vector 

Machines (SVMs) have been shown to perform well for supervised classification of 

hyperspectral images. The traditional view of SVMs in the research community is that 

they can handle high feature space dimensionality in an efficient way and hence feature 

selection is not vital to successful deployment of such classifiers. Using multiple 

classifiers with HSI data yields a better classification performance and hence it is very 

popular. A multi-classifier setup with SVM as learner is the most obvious combination in 

many remote sensing applications especially with HSI.  Recently, the interest among the 
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remote sensing research community is to investigate the effects of some sort of feature 

selection prior to kernel classification such as SVM. Waske et al [21] demonstrated the 

sensitivity of SVMs to random feature selection (RFS) for hyperspectral data. It was 

shown that a feature selection algorithm for SVMs can improve the classification 

performance by eliminating features that cause confusion between classes. The system 

proposed in this work employs a multi-classifier setup with non-uniform random feature 

selection and kernel density based decision fusion to utilize the information in HSI. 

1.3 Contributions of this work 

This research work seeks to develop a robust feature selection algorithm for 

performing hyperspectral image classification by using a multi-classifier setup with SVM 

classifiers. The research seeks to validate the algorithm for urban, agricultural, and food 

safety applications.  By using various band grouping techniques, the hyperspectral 

spectrum is partitioned into different regions based on the correlation among the bands. A 

novel non-uniform random feature selection is then employed on each band groups 

multiple times to arrive at a subset of bands. Then, the probability density of these 

subsets is computed to estimate a class score matrix that assigns a rank to every classifier 

with respect to its ability to distinguish every class from the other. The subsets are 

classified using a bank of kernel based classifiers. Each classifier in the bank produces a 

local class label.  A kernel density fusion technique is used to fuse these local class labels 

to form the final class label. 

The primary objectives of this dissertation are listed below 

1. Design a scheme to perform a feature selection which creates a good 

diversity among the classifiers. This helps in alleviating the problem of the 
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curse of dimensionality by intelligently eliminating the redundant bands in 

the selected subset. 

2. Determine the ability of each local classifier to distinguish a particular 

class from all other classes by developing a score matrix. This is very 

critical as the scores computed help in the decision fusion process. 

3. Design a decision fusion system based on the class matrix and determine 

its ability in terms of the overall accuracy and class accuracies. 

4. Determine a most suitable diversity measure for ensemble hyperspectral 

data classification. In particular, perform a comparative analysis on 

different diversity measures available for multi-classifiers and their effects 

on hyperspectral data. 

5. Perform a case study with the proposed ensemble classification approach 

for a food safety application. 

6. Create an aquatic plants dataset by using handheld hyperspectral sensor. 

1.4 Outline of this dissertation 

The outline of this dissertation is as follows: Chapter II discusses the background 

of supervised classification techniques, overview of parametric and non-parametric 

(statistical and kernel based) classification techniques, ensemble classification 

techniques, feature selection, and band grouping algorithms. This chapter also provides 

an overview of hyperspectral image analysis and its challenges. 

Chapter III describes the methodology developed in this dissertation and the 

proposed system based on non-uniform random feature selection and kernel density 

based decision fusion for hyperspectral image classification. Chapter IV demonstrates the 
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experimental setup and detailed results of four hyperspectral datasets. This chapter also 

shows the application of the proposed system to a food security problem of non-

invasively identifying aflatoxins in corn kernels. Chapter V focuses on creating and 

measuring diversity among classifiers in an ensemble setup. This chapter also discusses 

the challenges involved in measuring diversity. This is followed by conclusions and 

future work in chapter VI. 
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CHAPTER II 

CURRENT STATE OF KNOWLEDGE 

2.1 Supervised Classification Techniques 

Supervised learning contributes to the majority of research conducted in machine 

learning. These methods are extensively used in applications involving speech 

recognition, finger print recognition, face recognition, and also in remote sensing for 

classifying multi-spectral and HSI data. The defining property of supervised learning is 

the presence of labeled training data. These labeled data acts as a ‘supervisor’ that guides 

the learning system to induce models from labels [1]. These models can be later used to 

classify new unlabeled data. The quality of learning depends on the amount of the 

available training data and its diversity.  Some supervised classifiers are parametric in 

nature and some are non-parametric. Parametric classifiers parameterize the model of 

each class with a finite number of parameters. For example, the maximum likelihood 

(ML) classifier, a parametric classifier, models each class with the mean and covariance 

matrices. Parametric techniques have very simple assumptions about the data. In many 

practical applications, these assumptions do not hold well. For example, ML assumes the 

class densities follow a unimodal Gaussian distribution whereas data from many practical 

applications are multimodal and non-Gaussian. The non-parametric approach estimates 

densities from sample patterns which can be substituted as true densities and sometimes 

the non-parametric approach has ways to estimate the posteriori probabilities directly. 
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Techniques such as Support Vector Machines (SVM) can assume decision functions 

directly rather than estimating probability densities [2]. In this dissertation, two 

categories of supervised techniques are used: statistical classifiers and kernel classifiers. 

In particular, a statistical approach, the Gaussian Maximum Likelihood (ML), and a 

kernel-based approach, SVMs, are of interest. ML is a parametric approach and SVM is a 

non-parametric approach. In this chapter, a description of these two techniques will be 

provided. These two techniques can be employed in the form of a single classifier system 

and Multi-Classifier Systems (MCS), which will be discussed later in this chapter. A 

description of different dimensionality reduction and feature selection techniques will 

also be presented. A brief overview of decision fusion, band grouping, and feature 

selection techniques are presented in this chapter. This chapter concludes with a brief 

overview of hyperspectral image analysis. 

2.1.1 Statistical Methods 

The research on pattern classification initially started with the development of 

artificial neural networks [3]. Due to the high number of bands in HSI data, statistical 

approaches have gained popularity among the remote sensing community. If the 

parameters of class-conditional probability densities are known, the problem of 

computing the distribution can be avoided. This is a basic approach followed in ML and 

Baysian estimation [4]. Statistical pattern classification methods are characterized by 

having a well-defined statistical model, which gives a probability that each instance 

belongs in every class. 
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2.1.1.1 Maximum Likelihood Classifier 

The maximum likelihood classifier is a parametric classifier that uses the mean 

and covariance of a Gaussian probability density model for each class [5]. ML assumes 

that each class is Gaussian with a known mean and covariance so the classifier is optimal 

when the data satisfies this assumption. The discrimination function for each class is 

given by Equation 2.1 

𝑔𝑖(𝑋) = 𝑝(𝑋|𝑤𝑖)𝑝(𝑤𝑖) (2.1) 

𝑝(𝑤𝑖) 
𝑒−(1⁄2)(𝑋−𝑈𝑖)

𝑇∑𝑖 
−1(𝑋−𝑈𝑖)𝑔𝑖(𝑋) = (2.2)

(2𝜋)𝑛⁄2|∑𝑖|
1⁄2 

where n is the number of bands or features in the HSI data, 𝑋 is the n-dimensional pixel 

vector, and 𝑈𝑖 and ∑𝑖 are the mean vector and covariance matrix of class i respectively. 

The mean vector and covariance matrix are estimated by unbiased estimators from the 

data available for training. Equation 2.1 can be expanded by substituting the Gaussian 

function to obtain Equation 2.2. This can be further modified by applying a natural 

logarithm and omitting the constants to obtain 

1 1
𝑔𝑖(𝑋) = 𝑙𝑜𝑔𝑒 𝑝(𝑤𝑖) − 𝑙𝑜𝑔𝑒 |∑𝑖| − (𝑋 − 𝑈𝑖)

𝑇∑𝑖
−1(𝑋 − 𝑈𝑖) (2.3)

2 2 

The first term in Equation 2.3 represents priori probabilities. This term can 

become a constant if priori probabilities are assumed to be equal and can be ignored. For 

every class, the second term will be a constant as well. During a classification process, 

the only thing that needs to be computed is term three. 𝑔𝑖(𝑋𝑖) is computed for each class 

in the data and the class with the largest value is decided as a class label.   
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2.1.1.2 Dimensionality Reduction Techniques 

The high dimensionality of the HSI is beneficial in many ways but when it comes 

to classifiers, like ML, they suffer from the problem of Hughes effect when there is 

insufficient number of training samples. The covariance matrix in Equation 2.3 becomes 

ill-conditioned when the number of features is large. The generalization capability of the 

ML can go down as a result of higher dimensionality of features with insufficient number 

of training samples. To alleviate this issue, the data in the high dimensional space can be 

projected onto a lower dimensional space and perform the ML classification with a small 

number of features. 

PCA and LDA are two common choices for performing dimensionality reduction. 

Each has a different approach towards transforming the features to a smaller dimensional 

space. Given an n dimensional feature space consisting of HSI bands, PCA can be used to 

transform this into a subspace of m dimensions, whose basis vectors are aligned in the 

direction of the maximum variance in the original space, where the transformed subspace 

has less number of features than the original space (𝑚 < 𝑛). Let 𝑊 represent this 

transformation, then, the new reduced feature vectors can be defined as 𝑦𝑖 = 𝑊𝑇𝑥𝑖, 𝑖 = 

1,2, … 𝑁. The columns of this transformation matrix 𝑊 are the eigenvalues 𝑒𝑖. The 

eigenvalues can be computed directly from 𝜆𝑖𝑒𝑖 = ∑𝑒𝑖, where ∑ = 𝑋𝑋𝑇 is the 

covariance matrix and λ𝑖 is the eigenvalue of the vector 𝑒𝑖. 

The approach followed by PCA is more suitable for compression because it seeks 

to best describe the data in a lower dimensional space. This may not be a good approach 

for HSI classification, where the main focus should be to find a subspace that best 

discriminates classes. That is the approach followed in LDA transformation. Here, 
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provided a number of independent features relative to which the data is defined, LDA 

seeks to find a transformation that yields the largest mean differences between the desired 

classes. Two measures are defined to achieve this. They are called the within-class scatter 

matrix and between-class scatter matrix. Equations 2.4 and 2.5 represent the computation 

of these two measures. 

𝑐 𝑁𝑗 𝑗 𝑗 
𝑆𝑤 = ∑ ∑

𝑖=1
(𝑥𝑖 − 𝜇𝑗)(𝑥𝑖 − 𝜇𝑗)

𝑇 (2.4)𝑗=1 

𝑐 𝑆𝑏 = ∑ (𝜇𝑗 − 𝜇)(𝜇𝑗 − 𝜇)𝑇 (2.5)𝑗=1 

When the between-class measure is maximized and the within-class measure is 

minimized, optimal LDA transformation can be achieved. This can be done by 

𝑑𝑒𝑡|𝑆𝑏|maximizing the ratio  . This ratio is known as the Fisher’s ratio. 
𝑑𝑒𝑡|𝑆𝑤| 

In [6][7], it is mathematically shown that PCA can be detrimental for HSI 

classification applications. LDA, on the other hand, is clearly not suitable for classes with 

multi-modal distributions and hetroscedastic data classes (subsets of data having different 

statistical properties). In [8], it is mathematically and experimentally shown that LDA 

and its variations are only sub-optimal at best and may not be suitable for HSI 

classification applications. 

2.1.2 Kernel-Based Classification 

Kernel-based techniques have gained popularity in the past decade within the HSI 

research community [9][10]. Kernel-based methods map the data from the original space 

to a higher dimensional kernel feature space. A linear problem is then solved in the 

higher dimensional space. The learning algorithms can be designed and interpreted 

geometrically in the kernel space. Generally, the relationship between the kernel space 
18 



 

 

 

 

  

   

 

 

 

  

   

  

 

 

    

   

 

      

 

  

  

and the original space is non-linear. The performance of this theoretically elegant 

technique is superior to that of other statistical techniques discussed in the previous 

sections. The dimensionality reduction techniques such as PCA and LDA can be easily 

extended in terms of a kernel space. Kernel PCA (KPCA) [11] and Kernel Fisher 

Discriminant Analysis (KFDA) [12] are successfully employed for the analysis of HSI 

data. However, the computational complexity makes them unsuitable to be used as a part 

of a statistical classification system such as ML. 

Kernel-based classification problems are designed for two class problems and can 

be extended to multi-class. Considering N samples of a labeled training data, 

{(𝒙1𝑦1), (𝒙2𝑦2) … (𝒙𝑁𝑦𝑁)}, with 𝒙𝑖 ∈ ℝ𝑛 and 𝑦𝑖 ∈ {+1, −1}, is generated from a 

probability distribution 𝑃(𝒙, 𝑦) and is assumed to be independent and identically 

distributed. The problem is then to find a function f that minimizes the risk. This is given 

in Equation 2.6. 

𝑅(𝑓) = ∫ 𝑄[𝑓(𝒙), 𝑦]𝑑𝑃(𝒙, 𝑦) (2.6) 

where Q is the predefined risk function of errors attributed by f. The minimum of risk can 

be approximated by the error in the training dataset. This is called the empirical risk, 

𝑅𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(𝑓). 

1 𝑁 𝑅𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(𝑓) = ∑ 𝑄[𝑓(𝒙𝒊), 𝑦𝑖] (2.7)𝑖=1 𝑁 

The empirical risk presented in Equation 2.7 converges to the actual risk only 

when n goes to infinity. In practical applications, it is not possible to get infinite training 

samples. With limited training samples in HSI, this may cause over fitting. To avoid this 

problem, the solution can be regularized. Regularization can be achieved by minimizing 
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an l norm of the model parameters, w. This adds an extra term to the above equation and 

minimizing this term gives smooth solutions with small weights. This function is called a 

regularized minimizing function and is given in Equation 2.8. , 

2𝑅𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑒𝑑 = 𝑅𝑒𝑚𝑝𝑒𝑟𝑖𝑐𝑎𝑙 + λ ‖𝐰‖𝑙 (2.8) 

where λ is a tuning parameter. This is used to tune the tradeoff between the complexity of 

the model and training error minimization.  Equation 2.8 can be effectively solved by a 

structural risk minimization principle and it says generalization can be improved by 

minimizing an upper bound of the generalization error. It is learned from statistical 

learning theory that simple learning is achieved by low complexity classifiers in infinite 

dimensional space ӈ instead of ℝ𝑛. This can be achieved by introducing a mapping 

function φ which maps the ℝ𝑛 to the kernel space ӈ. 

2.1.2.1 Support Vector Machines (SVM) Classifier 

The effectiveness of SVMs for HSI data has been shown in [13] and has gained 

popularity over the last decade. They often provide high classification accuracies 

compared to other non-parametric and statistical approaches. SVM classifiers are 

particularly useful to classify heterogeneous classes with a limited number of training 

samples. A detailed tutorial of SVMs can be found in [2] . SVMs are intrinsically 

designed as binary classifiers; however, multi-class SVM classifiers can be constructed 

by using the original SVMs as basic blocks. One–vs-all and hierarchical tree based 

approaches are popular techniques for constructing multi-class SVM classifiers. A more 

detailed explanation for constructing multi-class SVMs can be found in [14][15]. 
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The SVMs strategy is to separate the training samples belonging to each class by 

tracing the maximum margin hyper planes in a higher dimensional kernel space. The 

training samples are implicitly mapped to a kernel space which is usually higher 

dimensional. This is shown in Figure 2.1 

Figure 2.1 Optimal hyper plane for linearly separable classification problem 

Maximizing the distance from the decision hyper plane to the samples can be 

achieved by minimizing the norm of w. So minimizing the 𝑙2-norm of weights 

‖𝑤‖2
2 becomes the first term in the minimizing function. Therefore, the SVM method 

solves 

1 2min(𝑤, ξ𝑖, 𝑏) { ‖𝑤‖2 + 𝐶 ∑ ξ𝑖} (2.9)𝑖 2 

Constrained to  

𝑦𝑖(𝜑
𝑇(𝑥𝑖). 𝑤 + 𝑏) ≥ 1 − ξ𝑖, 𝑓𝑜𝑟  𝑖 = 1,2, . . 𝑁 (2.10) 

ξ𝑖 ≥ 0, 𝑓𝑜𝑟 𝑖 = 1,2, . . 𝑁 (2.11) 

where w is the normal to the optimal decision hyper plane and it represents the nearest 

distance to the origin of the underlying coordinate system. This defines a linear classifier 
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( 𝑦𝑖 = 𝑓(𝑥𝑖) = 𝜑𝑇(𝑥𝑖). 𝑤 + 𝑏) in the kernel space ӈ. The non-linear mapping function φ 

guarantees the linear separability in ӈ. This property comes from Cover’s theorem [16]. C 

is the parameter that controls the generalization capabilities of the classifier and ξi are 

called positive slack variables and this allows the classifier to deal with permitted errors. 

The optimal hyper plane and slack variables are shown in Figure 2.2. 

Figure 2.2 Optimal hyper plane for non-linearly separable classification problem with 
slack variables 

Since the vector variable w lies in a kernel feature space ӈ, the best way to solve 

this equation is to solve a primal function given in Equation 2.9 through its Lagrangian 

dual problem, which consists of maximizing 

1
𝑄𝑑 ≡ ∑𝑖 𝛼𝑖 − ∑𝑖,𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗 (𝜑(𝑥𝑖). 𝜑(𝑥𝑗)) (2.12) 

2 

constrained to 0 ≤ 𝛼𝑖 ≤ 𝐶 and ∑ 𝛼𝑖𝑦𝑖 = 0, 𝑓𝑜𝑟 𝑖 = 1,2, . . , 𝑁, where the auxiliary 𝑖 

variables are the Lagrange multipliers corresponding to restrictions in Equation 2.10. In 

this way, the explicit usage of w can be avoided and Equation 2.12 can be optimized with 

respect to the variables 𝛼𝑖instead. All φ mappings in the SVM learning occur in the form 

of inner products. This allows one to define a kernel function 

22 



 

 

   

  

 

  

 

 

     

 

     

 

   

  

 

    

   

 

 

 

𝐾(𝑥𝑖, 𝑥𝑗) =  𝜑(𝑥𝑖). 𝜑(𝑥𝑗) (2.13) 

without explicitly computing the mapping  φ, a nonlinear SVM can be defined. 

The pair { ӈ , φ} will only exist if the kernel function K satisfies Mercer’s conditions. 

Linear kernels, polynomial kernels, and radial basis function kernels are by far the most 

popular functions that satisfy the Mercer’s conditions. 

Linear kernel: 

𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥𝑖. 𝑥𝑗 (2.14) 

Polynomial: 

𝐾(𝑥𝑖, 𝑥𝑗) = (𝑥𝑖. 𝑥𝑗 + 1)𝑑 , 𝑑 ∈ ℤ+ (2.15) 

Radial Basis Function kernel (RBF): 

2 
‖𝑥𝑖−𝑥𝑗‖ 

𝐾(𝑥𝑖, 𝑥𝑗) = exp ( 
2𝜎2 ) , 𝜎 ∈  ℝ (2.16) 

𝑛 After the dual problem, 2.9 is solved,  𝑤 = ∑ 𝑦𝑖 𝑥𝑖𝜑(𝑥𝑖), and the decision 𝑖=1 

function for any test vector x is given by 2.17 

𝑛 𝑦̂ = 𝑓(𝑥) = 𝑠𝑔𝑛(∑ 𝑦𝑖 𝛼𝑖𝐾(𝑥, 𝑥𝑖) +  𝑏) (2.17) 𝑖=1 

where b in Equation 2.17 can be computed by using the primal-dual relationship, with 

only samples with nonzero Lagrange multipliers 𝛼𝑖 account in the solution. This leads to 

a concept of sparsity, i.e., the solution is expressed as a function only of the most critical 

training samples in the distribution, namely support vectors (SV). In this study, RBF 

kernel functions are used with SVMs. 
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2.2 Conventional Single classifier system 

Since the introduction of artificial neural networks (ANN) for pattern 

classification [3], there are many approaches proposed over the years. Chen proposed a 

classification system based on back propagation neural networks (BPNN) [17]. This 

single classifier system that was developed to classify water, grasslands, and buildings 

proved to be encouraging with overall accuracies in the range of 80s with 20 meter 

spatial resolution AVIRIS data. A radial basis function (RBF) neural network-based 

classifier proposed in [18] and is shown to perform better than BPNN with similar data. 

Later, statistical techniques, such as Gaussian ML, are shown to be superior compared to 

ANN counterparts [5]. Few studies even compared the merits and demerits of the above 

mentioned approaches.  The advancement of kernel-based classifiers for the 

classification of remote sensing data is relatively new [9]. The inceptions of all these 

classifiers are based on using them as lone methods for classifying the input patterns. 

With a single classification setup, there is a decade of research involving the 

improvement of these techniques in terms of training speed and accuracy. In the early 

stage of this development, most of the applications were to solve fairly small problems 

that can be solved easily with single classifiers. The aim of the research at that time was 

to focus on exploring new single classifier systems. 

2.2.1 Limitations and Challenges 

Later, the advancement of sensor technology is vastly improved as a result of that 

the classification problems become more and more challenging for single classifiers to 

handle. Most of the aforementioned single classifiers are far from being optimal. Most of 

these techniques cannot handle complex datasets containing random errors or insufficient 
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training samples. So, the generalization capability of these approaches is not very good. 

The inherent nature of these approaches later became a limiting factor for improving the 

performance of single classifiers. The instability of these approaches hampered the 

development of better algorithms for the analysis of HSI data. As a result, the research in 

the last decade shifted its focus towards Multi-Classifier System (MCS) for HSI data. 

This will be discussed in the next section. 

2.3 Ensemble Classification Systems 

The concept of combining the predictions of multiple classifiers to produce a 

single classifier has been proposed by various researchers in the past [19][20]. In the 

literature, this concept is referred to as ensemble classifiers or MCS.  The resulting MCS 

is generally more accurate when compared to the individual classifiers that form MCS. 

An effective MCS is one where the individual classifiers in the MCS are accurate and 

make their classification errors on different parts of the input space. Combining the 

predictions of identical classifiers will not have any improvement. So, it is useful only 

when there is a disagreement among the individual classifiers. In [21], Krogh et al proved 

that the overall classification error can be divided into a quantity which is the average 

generalization error of each classifier and a quantity proportional to the disagreement 

among the classifiers.  From [22], [23], it can be concluded that an ideal MCS should 

consist of classifiers that have the highest disagreement possible. Bagging [24] and 

boosting [25]  are very popular methods used to create diversity among classifiers. In 

[26], an improved approach called attribute bagging was introduced by Bryll et al. This 

followed the development of many wrapper based MCS approaches. Each classifier is 

trained with independently randomly selected feature subsets. The outputs are expected to 
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be diverse and can be combined to form a final decision. Breiman [27] introduced a 

decision tree (DT)-based classification approach with Random Forests (RF). Min [28] 

proposed a dynamic subspace approach and Waske proposed the construction of SVM 

ensemble using Random Feature Selection (RFS) [29] . These are some of the approaches 

that are inspired from the basic idea of bagging and boosting classifiers successfully used 

in hyperspectral applications. In [30] Jacobs proposed an approach with mixture of 

experts followed by [31]. In [32] S Kumar et al. demonstrated the effectiveness of this 

technique with binary classifiers for a multiclass problem for hyperspectral data. In their 

work, partitioning of groups of classes is achieved by binary classifiers at different levels. 

Figure 2.3 shows a typical MCS setup. 

Figure 2.3 Typical MCS setup 

Until recently, HSI classification has been performed with single classifiers. In 

recent work, to improve the performance of conventional single classifiers, MCS have 

been developed [33]–[35]. MCS are often referred to as ensemble classifier systems, and 

they potentially perform better than single classifiers when diversity is established among 
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the classifiers. The diversity among the classifiers can be established in different ways 

[36], [37]. In chapter 4, the topic of diversity is discussed in more detail. Prasad et al. 

[34], [35] , demonstrated that, with an MCS setup with ML as classifier, the performance 

can be improved when compared to single classifiers, and there was a potential to further 

improve such a system by incorporating non-linear SVM classifiers. 

Recently, a MCS based on Random Feature Selection (RFS) proposed by Waske 

et al [29] and a dynamic subspace approach [28] proposed by Min et al were shown to 

perform well with HSI data. Techniques such as random forests [38] and RFS perform 

well because they create diversity among the classifiers by resampling the spectral bands 

at the inputs of the classifier. As proposed in [39], diversity can also be created in other 

ways. In [24] , Breiman has demonstrated the diversity creation by re-sampling. 

Strategies related to this approach such as bagging [26] and boosting [25] are also shown 

to be effective. 

2.3.1 Decision Fusion 

After the training phase in MCS, each classifier in the system generates its own 

class decision. Assuming the individual classifiers or the features used by these classifiers 

are diverse, the class decisions will be expected to be different. It is important to combine 

these class decisions to decide the final class label. This process is often referred to as 

decision fusion. 

The most straightforward and obvious approach for combining these decisions 

uses simple averaging. After training, the individual outputs are summed and divided by 

the number of classifiers. This simple approach is shown to be very effective in many 

cases [40]. This approach treats the output of each classifier equally as it weighs each 
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outputs decision with the weight of the inverse of the number of classifiers. This 

approach is particularly useful when we have classifiers with different local minima. The 

simplicity of equal weights is the drawback of this approach. This approach fails to 

utilize the classifiers that make more contribution to output generalization. So, they are 

not preferred for HSI classification as often we have diverse classifiers with different 

strengths. To alleviate this issue, the weights can be set to be unequal. This approach is 

referred to as weighted averaging. The total weight sums to one and each classifier 

decision is multiplied by a fraction of the total weight according to its performance or the 

diversity of features. 

For HSI data, voting is explored in [40]. It takes more than half the number of 

classifiers to agree on a class decision for it to be accepted as a final decision. This is 

called majority voting. Linear opinion polls and logarithmic polls are some variations of 

this approach. The problem with this approach is that majority voting ignores the fact 

that, in some cases, bad classifiers do produce results in such a way that can influence the 

overall decision. This defeats the purpose of having diverse classifiers and MCS itself. To 

avoid this problem, a ranking approach could be used. Here, along with the class 

decisions, the classifiers produce a list of choices ranked according to the likelihood in-

terms of probability. The decision can be taken by using additional information about the 

data (usually the training data). In this dissertation, a new ranking approach called kernel 

decision fusion is proposed. This technique uses the distance between class probability 

density functions as likelihood. This approach is shown to perform better than majority 

voting. 
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2.4 Classical Feature Selection Techniques 

The Maximum Likelihood (ML), a traditional supervised pattern classification 

approach, often fails to classify HSI data accurately because of (a) the high 

dimensionality of features, (b) multimodal distribution of data, and (c) limited ground 

truth availability. In order to solve the problem of high dimensionality, there are several 

existing approaches based on the concepts of dimensionality reduction and feature 

selection [1].  The Principal Component Analysis (PCA) and Fisher’s Linear 

Discriminant Analysis (LDA) are popular dimensionality reduction techniques. Feature 

selection can also be performed using metrics such as the Bhattacharya Distance (BD), 

Jeffries-Matusita (JM), entropy, etc.  The Gaussian ML classifier assumes that the classes 

are Gaussianly distributed. This is a limitation for the majority of the practical HSI 

datasets. Algorithms based on Gaussian Mixture models [41] have been proposed in the 

past to accommodate multi-modal distributions. An alternative approach that has become 

more popular recently with HSI data is the use of Support Vector Machines (SVM).  

Finally, there are techniques to solve the limited ground-truth availability such as sample 

interpolation and adaptive classifiers [42][43]. 

2.4.1 Feature Selection Techniques for SVM 

SVMs are generally well suited for datasets that have a high dimensional feature 

space. Hence, they are naturally well-suited to be employed within a MCS framework. 

An SVM based MCS framework with Random Feature Selection (RFS) has been shown 

to outperform conventional single-classifier approaches for HSI applications. Random 

feature selection and random forests are well known techniques in the machine learning 

community. They are often used in situations where it is important to avoid noise or 
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outlier features during the training phase of a classifier. These techniques can also be 

used in MCS algorithms to provide diversity between classifiers. Diversity within MCS is 

achieved by RFS with a uniform sampling distribution for the feature selection process. 

SVMs are generally thought to be insensitive to the dimensionality of the feature set, 

hence, at first glance, feature selection may seem unnecessary. Simple experiments with 

SVMs on HSI data have demonstrated that SVMs can perform better when a feature 

selection algorithm is employed before classification [44][45]. Recently, a few methods 

have been proposed for selecting features for SVM within a MCS setup. 

2.4.2 Random Feature selection 

The selection of features in [29] is a uniform random feature selection (RFS). In 

[44], the possibilities of using a non-uniform RFS (NURFS) based MCS with SVMs is 

explored. It is found that a diverse classifier ensemble for a classification problem need 

not always come from a RFS, as proposed in [29][28]. In [44], it is demonstrated that 

NURFS can provide better performance than uniform RFS. As extension, a fully 

automated MCS with NURFS using SVM, is presented in [46]. It is assumed that a 

diverse set of features leads to higher classification accuracies. Although the diversity can 

be defined in many ways [39]  for the purposes of this study, a diverse set of spectral 

bands is defined as follows: 

1. Bands are selected from multiple spectral regions across the entire 

spectrum of signature. 

2. Cross-correlation between selected bands is minimized. 

The approach proposed here combines the following methods to create diversity 

within a pool of classifiers and to ensure that strengths and weaknesses of individual 
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classifiers are incorporated into the final decision making: a) re-sampling features in the 

data through RFS; b) manipulation of input features through NURFS; and c) 

manipulation of output classes through scores computed from Kernel Density estimation. 

The approach uses a spectral band grouping [47] to perform NURFS and  it uses kernel 

density scores to perform decision fusion.  To verify the effectiveness of this approach, 

experiments are performed to compare the overall accuracies, improvement in user and 

producer accuracies of SVM, RFS, NURFS, SVM with kernel density fusion, and 

NURFS with kernel density fusion. The sensitivity of the above mentioned approaches to 

the number of samples required to train them is also studied. 

2.5 Band Grouping 

Hyperspectral data has hundreds to thousands of reflectance values associated 

with every pixel. Because of this, HSI demands huge storage space and computing 

power. In addition, with supervised classification, HSI suffers from Hughes phenomenon. 

So, a feature reduction or band selection step is inevitable. Traditional ML-based 

statistical approaches include projection based dimensionality reduction techniques such 

as Principal Component Analysis (PCA) or Fisher’s Linear Discriminant Analysis (LDA) 

followed by a supervised classifier. Spectral band grouping is another way to alleviate 

some of the problems caused by high dimensionality of hyperspectral data. HSI signature 

with narrow spectral spacing exhibits a high degree of correlation between each other. 

This is true for most of the HSI data and can be easily exploited to reduce the number of 

bands. A contiguous band grouping is shown to produce the desired results. In [48], Lee 

et al. have proposed a band grouping strategy that utilizes the spatial and spectral 

information to find band partitions. In [47] , Prasad proposed a supervised method that 
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partitioned the HSI spectrum into multiple subspaces, each with a group of contiguous 

spectral bands. This technique is designed to exploit the MCS configuration. In [49] and 

[50], the authors propose a segmented PCA algorithm that employs a spectral band 

grouping prior to implementing PCA on each identified group separately. Band grouping 

based on Dirichlet Process Variable Clustering (DPVC) is gaining popularity in the area 

of spectral clustering and classification is explored in [51][52]. 

2.6 Hyperspectral Image Analysis 

Hyperspectral imagery consists of three dimensions, two spatial and one spectral. 

Each spatial pixel can have hundreds to thousands of spectral reflectance values. HSI data 

is spectrally over determined so each pixel has ample amount of information. This rich 

information does not always guarantee the ability to identify and distinguish different 

materials. So, a robust feature elimination or feature selection step is very important to 

utilize the rich information to achieve higher classification accuracies. Reflectance can be 

defined as the percentage of the light reflected from the material of interest. Reflectance 

does not take into account the amount of light that is absorbed or transmitted by that 

material. 

Figure 2.4 shows the reflectance spectrum of vegetation under various levels of 

herbicide stress. The hyperspectral sensor used in this case is an Analytical Spectral 

Devices (ASD) sensor. This figure shows the reflectance of the vegetation measured 

across a range of wavelengths (400nm to 2400nm). Different materials have varying 

levels of reflectance and absorption properties, so they can be used to uniquely determine 

the material. Commercial sensors offer various spectral and spatial resolutions, more 

number of bands can have more information in the data to distinguish between different 
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materials. As an example, if a corn crop is sprayed with herbicide with different 

concentration, then it can be observed that the signatures share a common shape with 

slight difference in reflectance values across the spectrum. Although it is easy to 

distinguish different levels of herbicides, algorithmically it is a challenging problem as 

there are only subtle differences between each signature. The visible spectrum is from 

400nm to 700nm. In this figure, a sharp edge can be observed at 700nm where the visible 

red region ends and near-infrared (NIR) begins. This characteristic can be observed in 

most vegetation types. The differences between these classes are little in the visible 

spectrum and gets larger at the higher wavelengths. This plays a vital role in classifying 

the HSI data compared to that of multi-spectral counterpart. 
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Figure 2.4 Hyperspectral signatures of corn under various levels of herbicide stress 
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Figure 2.5 shows a typical HSI remote sensing system for ground cover 

classification where the ground scene is captured by charge coupled devices (CCD) 

sensors. 

Figure 2.5 Hyperspectral Remote Sensing System 

Image Courtesy – Lori M. Bruce, Mississippi State University 

The reflectance values are then pre-processed and converted into a HSI cube. Red 

edge, leaf pigment, cell structure, and water content of the material are shown in the 

vegetation analysis. It can be observed that the vegetation has a unique spectral signature 

compared to water and soil. The difference is obvious in the case of classifying 

vegetation from soil and water but the problem could be a little harder when it comes to 

classifying different vegetation groups. In [53], Landgrebe discusses the inability of 

conventional multi-spectral methods to handle large number of bands and shows a way to 
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perform the analysis with HSI data. An orthogonal subspace projection approach is 

proposed in [54] for the classification and dimensionality reduction of HSI data. Haertel 

investigated the problem of classifying subtly varying classes with HSI data [55]. 

Jimenez proposed a projection pursuit approach in [56]. This technique explored the 

possibility of bypassing the problem of a small number of training samples by making all 

computations in the lower dimensional space. 
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CHAPTER III 

NON-UNIFORM RANDOM FEATURE SELECTION, DECISION FUSION BASED 

ON KERNEL DENSITY ESTIMATION FOR HYPERSPECTRAL IMAGE 

CLASSIFICATION 

3.1 Introduction 

Hyperspectral imagery (HSI) provides the potential for high classification 

accuracies of subtly different ground-cover classes, but the key to its success is 

effectively extracting pertinent features from the high-dimensional datasets and 

effectively designing classifiers to exploit those features. Over the last decade, Support 

Vector Machines (SVMs) and Multi-Classifier Systems (MCS) have gained significant 

popularity compared with conventional statistical classification methods. Traditional 

statistical approaches, such as the Maximum Likelihood (ML), fail to classify these HSI 

data accurately because of the high data dimensionality or the multimodal distributions of 

the data. A major drawback of statistical approaches is that they often perform poorly 

under limited availability of training data, as is often the case with HSI data. 

Dimensionality reduction algorithms such as Principal Component Analysis (PCA), 

Linear Discriminant Analysis (LDA), and Stepwise-LDA (S-LDA) can provide partial 

solutions to this problem, but the resulting performance is typically still not at par with 

techniques such as SVMs. 
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MCS based classifiers can perform better than single classifiers if the diversity 

among the classifiers is established effectively. Even in a MCS setup, if the individual 

learners are ML classifiers, then the overall classifier will again suffer from similar 

drawbacks.  SVMs are generally well suited for datasets that have a high dimensional 

feature space. Hence, they are naturally well-suited to be employed within a MCS 

framework [1]. Random feature selection and random forests [2] are well known 

techniques in the machine learning community. They are often used in situations where it 

is important to avoid noise or outlier features during the training phase of a classifier. 

These techniques can also be used in MCS algorithms to provide diversity between 

classifiers. In [1], diversity within MCS is achieved by RFS with a uniform sampling 

distribution for the feature selection process. SVMs are generally thought of to be 

insensitive to the dimensionality of the feature set, hence at first glance, feature selection 

may seem unnecessary. Simple experiments with SVMs on HSI data have demonstrated 

that SVMs can perform better when a feature selection algorithm is employed before 

classification [3]. Recently, a few methods have been proposed for selecting features for 

SVM within a MCS setup [4][5]. 

3.2 Non-Uniform Random Feature Selection 

In [1], the performance of uniform RFS is shown to be better than that using 

single SVMs and other traditional approaches. Based on some experiments [3], it is found 

that a diverse classifier ensemble for a classification problem need not come from a 

uniform random selection and partitioning of the feature space. Considering the nature of 

the hyperspectral data, it is reasonable to believe that a non-uniform or spectrally-
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constrained RFS will provide a more diverse classifier setup, resulting in further 

improvements. 

In the conventional RFS based multi-classifier system, the randomly selected 

subset of features provided to each classifier in the ensemble is generated by uniformly 

selecting the subsets from all features. In the proposed approach, features are selected for 

any classifier to come from one spectral region resulting in a non-uniform random feature 

selection 

3.2.1 Preliminaries 

The hyperspectral dataset is assumed to have n classes, each represented as µi. Ni 

2is the number of samples in µi. Samples in µi are denoted as 𝐶𝜇𝑖 = {𝑐𝑖
1, 𝑐𝑖 , … 𝑐𝑖

𝑘 }, where 

𝑐𝑖
𝑘 is the kth sample of the class 𝜇𝑖. Samples from different classes can be grouped 

together to form a super class and is represented by 𝛺 = {𝐶𝜇1
 , 𝐶𝜇2

, … , 𝐶𝜇𝑛
 }. A feature 

vector 𝑋̅ is d dimensional and each feature is represented by xi, i.e., 𝑋̅ = (𝑥1, 𝑥2, … , 𝑥𝑑). 

We define the normalized distance between any two set of samples with respect to its 

feature vector 𝑋̅ as P and Pn, where P is the distance between two classes µi and µj and Pn 

is the distance between two sets µi and Ω. 

3.2.2 Spectrum Partitioning 

The proposed approach is arrived after the following experiments. Initially, the 

feature space is divided into m distinct (but contiguous) regions with NRi being the 

numbers of features selected from each region by a uniform random feature selection. 

The first region always starts from the first band and the last region ends at the last band. 

The size of each region (R) is represented by Ri. Figure 3.1 shows how the feature vector 
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is divided into m different regions. Since a uniform RFS is performed in each region 

separately, this approach can be thought of as a piece-wise uniform RFS. 

Figure 3.1 Dividing the feature vector into m regions 

Since the HSI data often has high correlation between successive bands, there is a 

high chance of consecutive or nearby bands getting grouped into different learners when 

using conventional uniform RFS for MCS. This would clearly reduce the diversity of the 

ensemble and would result in reduced robustness of the MCS approach. However, in the 

proposed feature selection approach, features for individual classifiers in the resulting 

MCS are drawn in a non-uniform fashion. This creates greater diversity among the 

classifiers compared to selecting features from a uniform random selection. In particular, 

this approach can result in better ensembles that are less correlated, owing to the fact that 

the probability of bands that are spectrally close to each other being sent to different 

learners is very low. After these initial experiments with encouraging results, non-

uniform RFS (NURFS) is used for the ensemble classification system. The above-

mentioned approach follows a manual way of finding region boundaries in order to 

automate a band grouping strategy. The decision fusion used for these initial experiments 

is averaging and majority voting. In the ensemble classification system proposed in this 
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work, a novel kernel density-based decision fusion strategy is employed. Band grouping 

and kernel density fusion are discussed later in this chapter. 

In a RFS based multi-classifier system [1], a subset of features are selected by 

random sampling from a complete set of features whose indices tend to follow a uniform 

distribution. Figure 3.2(a) illustrates two examples of equally likely uniformly distributed 

spectral band feature selection where [𝑑1] has highly correlated bands as compared 

to [𝑑2]. An obvious way to avoid this situation is, as shown in Figure 3.2(b), to divide the 

spectrum uniformly into smaller regions and perform feature selection within each region 

and concatenate the selected features. The outcome of this approach depends on the 

choice of the number of partitions and partition boundaries. Features can still be 

correlated with this approach. As one progresses their way along the spectrum, the bands 

in a hyperspectral signature are typically more highly correlated if they are adjacent. In 

addition, from one set of contiguous bands to another, the rate of change in the 

correlation of neighboring bands varies. An intelligent way of partitioning the spectrum 

would be to place the partition at a point in the feature set where the correlation of 

neighboring bands changes drastically. This will result in a non-uniform partitioning of 

spectral bands and bands selected from these non-uniform regions, which are expected to 

be less correlated. This is shown in Figure 3.2(c). 
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Figure 3.2 Partitioning of Spectral Bands 

(a) Two examples of equally likely uniformly distributed spectral band feature selection 
where d1 has highly correlated band compared to d2. (b) Example of uniform partitioning 
of spectral band (shown in blue). (c) Non-uniform partitioning of spectral bands with 
uniformly distributed feature selection per partition 
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3.2.3 Band Grouping 

To obtain an optimal set of partition boundaries in terms of correlation, an 

automatic band grouping strategy is used. In [6], an intelligent spectral partitioning 

technique that groups highly correlated bands into distinct contiguous subspaces and then 

use those partitions with a MCS is proposed. This is often called spectral band grouping 

or subspace partitioning. An intelligent (non-random) band grouping was performed to 

partition the spectrum into subsets. In this approach, the diversity among the classifiers is 

gained by breaking up the spectrum into smaller groups. The region boundaries are 

automatically selected based on a bottom-up band grouping strategy. In this approach, 

starting with the first band, each successive band is added to the group. If this addition 

does not change the performance metric employed, then, the growth of that group is 

stopped and a new group is started, resulting in a contiguous partitioning of the spectra. 

The metric employed for band grouping in this work is the product of the Bhattacharya 

distance and correlation. 

3.2.4 Proposed Non-Uniform Random Feature Selection Approach 

In the proposed approach, the feature space is divided into m distinct but 

contiguous regions in such a way that, in each region, it attempts to maximize the class 

separation and minimize the statistical dependence by band grouping. Let 𝑅𝑖 be the size 

of each region, 𝑉 be the total number of features in the data, and 𝑣𝑖 be the number of 

features that are selected from each region, which is directly proportional to 𝑅𝑖. Then, the 

total number of features selected for each classifier is 

𝑚𝑉𝑁𝑈−𝑅𝐹𝑆 = ∑𝑖=1 𝑣𝑖 (3.1) 
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Figure 3.3 illustrates this setup. Since uniform RFS is performed in each region 

separately, this approach can be thought of as a piece-wise uniform RFS. Since the HSI 

data has high correlation between consecutive bands, there is a good chance of 

consecutive bands getting grouped into different classifiers when using uniform RFS in a 

MCS. These highly correlated bands would clearly affect the diversity of the ensemble 

and, then, result in reduced robustness of the MCS approach. However, in the proposed 

NURFS, features for individual classifiers in the resulting MCS are drawn in a non-

uniform fashion thereby creating greater diversity among the classifiers compared to 

selecting features from a uniform random selection.  

RFS RFS RFS

Concatenation

…

R1 R2 RmR3

 𝑑1
     𝑑2

     … 𝑑3
       

Reduced spectral data

Original 
spectral 

data

 𝑑1
                  𝑑2

                              …                                𝑑𝑚
         

Figure 3.3 NURFS Feature Selection from original data 
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Experimentally, it is observed that this approach can result in better ensembles 

where features are less correlated, because the probability of features that are spectrally 

close to each other being sent to different learners is very low. The above said is applied 

to each classifier in the MCS separately unlike [1]. With initial experiments presented in 

[3], it is found that the size of the region 𝑅𝑖 plays an important role in the performance of 

Vthe overall classification. As recommended in [7], VNU−RFS ≈ . The proposed MCS 
2 

system is discussed in Section 3.4  The random subspace selection demonstrated in 

[1][5][7] for MCS aims to create diversity among classifiers. The aforementioned 

techniques propose to construct ensembles by bagging and boosting variants. 

In the proposed NURFS, it is believed that the optimal subset to create maximum 

diversity need not come from a uniform RFS because there is a very good chance that the 

nearby spectral bands get grouped into the same classifier. This is clearly the case of 

classifiers having correlated features. This situation of similar grouping of features can 

sometimes affect the diversity by forcing the classifiers to commit similar errors.  By 

using the proposed approach described in Section 3.4, this approach attempts to alleviate 

this issue. The proposed approach is compared against regular SVM, RFS, and NURFS 

using band grouping only. 

3.3 Kernel Density Based Decision Fusion 

NURFS produces a group of features to be trained by each classifier. Each of 

these sets of features has a unique class separation capability since they form a different 

combination of the original feature set. In order to make use of this uniqueness in our 

system, we estimate a set of scores for each classifier that is proportional to the ability of 
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the classifier to classify each class from all the other classes. For example, if there are 

𝑧 classifiers and the data has n classes, then, we generate a score matrix of size 𝑧 × 𝑛. 

These scores are computed by kernel density estimation across all the features. Oh et al. 

proposed an approach to estimate the class separation [8] to perform hand writing 

recognition. This proposed decision fusion approach is inspired from the algorithm in [8]. 

3.3.1 Estimation of Density Using Kernel Function and Distance between Classes 

NURFS results in group of selected bands for each classifier. A probability 

density for a class for a feature vector 𝑋̅ is estimated. A probability distribution for the 

class 𝜇𝑖 can be computed by, 

1 𝑁𝑖 𝑋̅−𝑐𝑖 𝑓(𝜇𝑖|𝑋) = ∑ 𝐾 ( ) (3.2)𝑖=1 ℎ𝑁𝑖 ℎ 

where, 𝐾(𝑋̅) is the kernel function and ℎ > 0 is the smoothing parameter. In the 

proposed NURFS, the rectangular, normal, triangular, and Epanechnikov kernel functions 

[9] are tested and compared. Let 𝑃 be the distance between any two classes and 𝑃𝑛 be the 

distance between any given class and all other classes (Ω) can be computed by Equations 

3.3 and 3.4 respectively. 

. 
𝑃(µ𝑖, µ𝑗, 𝑋̅) = ∫ |𝑓𝜇𝑖

(𝑋̅) − 𝑓𝜇𝑗
(𝑋̅)|  𝑑𝑋̅ (3.3)

𝑅𝑑 

𝑃𝑛(𝜇𝑖,𝛺, 𝑋̅) = ∑ 𝑃(𝜇𝑖, 𝛺, 𝑋̅) (3.4)𝑖⊄𝛺 

where 𝑓𝜇𝑖 and 𝑓𝜇𝑗 are class distributions of 𝜇𝑖 and 𝜇𝑗 respectively. When there is a 

complete overlap between distributions, Equation 3.3 gives a minimum (≈ zero) and no 

overlap gives maximum. i.e., when there is a complete overlap, 𝑋̅ cannot distinguish two 

classes whereas it can distinguish the best when there is no overlap. Thus, it defines the 
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ability of 𝑋̅ to differentiate between any two classes of 𝜇𝑖 and 𝜇𝑗. Equation (3.4) is 

computed for every class 𝜇𝑖. Then the values are averaged over all the selected features 

resulting in an array of scores of seperability of each class with respect to the selected 

features. 

3.3.2 Computation of Rank Matrix 

These scores are sorted in descending order where the higher the score, the higher 

the ability to classify a class. This step is shown as a compute class score in the proposed 

system. This process is repeated for every classifier in MCS resulting in a 𝑧 × 𝑛 score 

matrix representing the ability of each classifier to distinguish a particular class 𝜇𝑖 from 

Ω. These scores are denoted as 𝜌. Now, each row of this matrix corresponds to the ability 

of each classifier to distinguish 𝑛 classes where the higher the value of 𝜌, the higher the 

chance of distinguishing that class from all other classes (Ω). Although estimating the 

class probability density function is a harder problem than classification, the aim of 

estimating these scores is to get a coarse estimate of separation which can be used during 

decision fusion. 
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µ1 µ2 µ3 µ4 µ5 

1 3 5 5 1 1 

2 5 1 1 3 3 

3 1 3 4 4 4 

4 2 4 3 5 2 

z=5 4 2 2 2 5 

Figure 3.4 Kernel Density Score Matrix 

3.3.3 Decision Fusion 

After estimating the score matrix, the actual classification is performed with all 

the SVM classifiers in MCS resulting in class labels for every test sample from each 

classifier. Let 𝑄 be the number of test samples with 𝑧 being the number of classifiers in 

MCS, then, the resulting class labels can be represented as a 𝑧 × 𝑄 matrix. Each column 

of this matrix (𝑙𝑖) holds the prediction of each test sample from 𝑧 different classifiers in 

MCS. In the hard decision fusion scenario, the final classification decision can be 

obtained by a majority vote over each classifier. The final decision of the 𝑖𝑡ℎ test sample 

𝐿𝑖 can be obtained from 𝑙𝑖 via Equation 3.5 

𝐿𝑖 = 𝑚𝑜𝑑𝑒(𝑙𝑖) (3.5) 

52 



 

 

 

 

  

     
       

  

  

 

 

 

    

  

 

   

  

 

 

 

  

   

0       𝑓𝑜𝑟 0 ≥ 𝜌 ≥ 0.3 
𝑧⁄3  𝑓𝑜𝑟 0.3 >  𝜌 ≥ 0.5 

𝜂 = { (3.6)
𝑧⁄2 𝑓𝑜𝑟 0.5 >  𝜌 ≥ 0.7 

𝑧 𝑓𝑜𝑟 0.7 >  𝜌 ≥ 1 

Mathematically, mode gives the most frequently occurring event. By means of a 

majority vote, a hard decision fusion is obtained. This only uses the predictions of 𝑧 

classifiers in MCS. The voting scheme described in Equation 3.5 is uniform voting. i.e., 

each classifier in MCS has equal strength in deciding the final class label. The proposed 

system has a voting mechanism based on scores 𝜌 where the strength of each classifier is 

modified according to its ability to classify a particular class 𝜇𝑖 from all other classes (𝛺). 

This can be achieved by creating a modified class label column matrix 𝑙𝑖 for each test 

sample based on the corresponding 𝜌. This is done by appending 𝑙𝑖 with an array of 

length 𝜂. The elements of the appended array will have the class label corresponding to 

the highest 𝜌, where the length of  𝑙𝑖 can vary depending on 𝜌 as given in Equation 3.6. 

From experiments with various HSI datasets, Equation 3.6 is arrived. This 𝑙𝑖 is then used 

to perform a majority vote. The decisions of MCS are not modified when 𝜌 ≤ 0.3. These 

scores will bias the majority voting decision based on the strengths and weaknesses of 

each classifier. 

3.4 Proposed System for Hyperspectral Image Classification 

A non-uniform random feature selection based ensemble classification system 

with kernel density decision fusion is depicted in Figure 3.5. NURFS, as demonstrated in 

Figure 3.3, is performed on the HSI data z times. 
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Figure 3.5 Proposed NURFS based Multi-Classifier System 

The value of z is usually arrived after experimentation with the underlying 

training data. In this system, SVM classifiers are used as learners and each training 

dataset is used to estimate the separation between classes. The separation estimates are 

used to form a class score matrix, as shown in Figure 3.4. This matrix gives the ability of 

each of the z classifiers to distinguish a particular class from others.  This estimate is later 

used to guide the decision fusion process. The decision fusion process combines the class 

scores and the class labels produced by SVM classifiers. The detailed explanations of 

these steps are presented in Sections 3.3.1 to 3.3.3. 

3.5 Practical Application of Non-Uniform RFS MCS 

Aflatoxin contamination is a concern for all classes of livestock. Aflatoxins are 

produced by certain mold fungi: Aspergillus flavus and Aspergillus parasiticus. Aflatoxin 
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in food is hazardous for humans and animals. In this work, we propose a non-invasive 

system for detecting aflatoxin and classifying corn kernels based on the aflatoxin 

contamination levels.  Fluorescence hyperspectral images of single corn kernels were 

used. Single and multi-classifier configurations of support vector machines are used to 

classify single corn kernels on a per-pixel basis. The performance of SVM classification 

with and without feature selection is assessed.  Confusion matrices of different 

configurations are used for comparison, demonstrating that the multi-classifier system 

with non-uniform feature selection performs well, achieving an overall accuracy of 84%. 

3.5.1 Problem Definition 

Aflatoxin is an extremely toxic chemical produced primarily by two molds, 

namely, Aspergillus flavus (A. flavus) and A. parasiticus. The toxins are produced when 

the molds invade grain crops that are stressed by heat and drought [10]. Aflatoxin 

contamination of corn in particular is a serious problem because consumption of the toxin 

in food or feed can lead to deleterious health effects for human beings as well as animals 

[11].  Additionally, the financial loss to farmers due to rejection and disposal of infected 

grain can be devastating. In the United States, the Food and Drug Administration (FDA) 

regulates aflatoxin levels, allowing 20 parts per billion (ppb) in food and 100 ppb in feed 

as a general guideline [12]. 

The presence of aflatoxin can be tested by several methods [13]. Traditional 

detection methods include the black light presumptive test followed by thin layer 

chromatography (TLC) for quantification.  More recently developed methods include 

mini column tests, rapid test field and laboratory kits, and enzyme-linked immuno assay 

(ELISA) kits. Although convenient, these techniques have various drawbacks such as 
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lack of quantitative ability, being time consuming, costly, invasive in nature, and most 

require destruction of samples.  The most reliable detection and quantification methods 

such as high performance liquid chromatography (HPLC) or mass spectrometry coupled 

with HPLC (MS-HPLC) are not only very expensive but also instrument and 

interpretation intensive [14].      

Hyperspectral imaging is a useful technology in determining contamination in 

food especially corn [15]. By exciting the corn kernels with ultra violet (UV) radiation, 

the emitted fluorescence is captured by a hyperspectral image sensor with bands covering 

visible to near-infrared regions. In the past, the applicability of fluorescence 

hyperspectral imaging for estimating aflatoxin content in individual corn kernels was 

studied in [15].  The performance of the spectral angle mapper classification technique 

was evaluated in [16]. 

3.5.2 Proposed System for Classifying Aflatoxins in Corn Kernels 

Due to the high dimensionality nature of the data, statistical classifiers, such as 

maximum likelihood, require a feature reduction step. The performances of such 

classifiers are shown to perform poorly when compared to classifiers based on Support 

Vector Machines (SVM). In [17], the suitability of SVMs for hyperspectral image 

classification was presented. Multi-classifier systems (MCS) are shown to perform better 

than their single classifier counter parts [18][19]. MCS are often referred to as ensemble 

classifiers, where more than one classifier is employed and each perform classification of 

the same data with different classification algorithms or different features of the data. The 

decisions of individual classifiers are combined to produce the final decision.  In [5] and 

[20], the effectiveness of MCS is demonstrated with hyperspectral data.  In [1] and [3], it 
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is shown that the SVM classification performance can be improved by performing feature 

selection on hyperspectral data. Uniform and non-uniform random feature selection 

(RFS) techniques are shown to perform better than single classifiers. 

The proposed non-invasive detection system for aflatoxin in corn, using SVM 

classifiers under different configurations is illustrated in Figure. 3.5. 

 

Corn Kernels                           
in Bins 

Conveyer Belt 

UV Excitation & 
Hyperspectral 

Imager 

 
< 0.1 ppb                                                  
20 < ppb < 0.1                                                 
100 < ppb < 20                                        
> 100 ppb 

Hyperspectral 
Image 

Figure 3.6 Non-Invasive detection of Aflatoxins in corn kernels 

The proposed non-invasive system for classifying four aflatoxin levels in corn 

kernels is shown in Figure 3.5, with aflatoxin levels being divided into <0.1ppb (parts per 

billion), 20>ppb>0.1, 100>ppb>20 and >100ppb as Class1, Class2, Class3 and Class4 

respectively . It is assumed that the corn kernels sampled are passing on a conveyer belt 

through the UV-excitation and hyperspectral imager in small bins. Then, a hyperspectral 

image is captured for each bin. This is a pixel based classification system, and it produces 

a map of acquired images with different chromic representation for each aflatoxin 

concentration. 
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In this study, several feature selection and classification schemes for the proposed 

system have been trained and tested. The references of all 504 kernel pixels are obtained 

from VICAM chemical testing process [12]. The hyperspectral signatures of the training 

pixels are used to train candidate feature selection and classification methods, including 

1) Single SVM classifier, 2) SVM-MCS with uniform RFS, and 3) SVM-MCS with non-

uniform RFS. Then, each method is tested, with each pixel in the image classified, 

resulting in classification maps, or images. The resulting classification maps are then 

compared to the reference maps and confusion matrices are created. Instead of dividing 

the spectrum into regions with uniform length, an intelligent approach could be 

employed, computing the correlation between consecutive bands and splitting the regions 

where there is a steep change in correlation. This can be achieved by a band grouping 

strategy as described in [21]. 

For this study, the product of the Bhattacharya distance and correlation has been 

used in band grouping. Epanechnikov kernel is used in the estimation of the density 

functions. Detailed results are presented in Chapter 4. A non-invasive system for 

classifying corn kernels based on the contamination levels of aflatoxin has been 

proposed. From the study, it is evident that SVM classifies are well suited to 

automatically analyze the UV excited hyperspectral pixels of corn kernels.  Further, the 

study shows that the SVM multi-classifier with non-uniform random feature selection 

provides better classification accuracies than single SVM and multi-classifier SVM with 

RFS. In future work, a classification accuracy map of corn palates can be used to show 

the potential of the proposed system. In addition, post processing such as morphological 

processing, can be performed on classification maps to eliminate outliers. 
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CHAPTER IV 

EXPERIMENTAL SETUP AND RESULTS 

4.1 Experimental Hyperspectral Datasets 

In this dissertation, five hyperspectral datasets are used to analyze the efficacy of 

the proposed NURFS feature selection and kernel-based density decision fusion 

techniques.  Among the five datasets, two of them represent agricultural problems. The 

first is a corn herbicide stress dataset where each class belongs to HSI signatures with 

varying levels of herbicide stress, The second is a standard Indian pines agricultural 

dataset acquired over northern Indiana using AVIRIS [1]. The third dataset represents a 

problem of classifying aquatic plant species. It is a simulated HyspIRI dataset [2] and is 

simulated from ASD [3] signatures. The fourth is another standard dataset representing 

an urban classification problem. It was acquired over Pavia, Italy using a ROSIS sensor 

[4][5]. The fifth and final dataset is a laboratory fluorescence HSI data representing a 

problem of classifying aflatoxins in corn kernels. 

4.1.1 Corn Herbicide Stress Dataset - Agricultural Data 

The corn herbicide stress experimental HSI dataset was acquired over North 

Mississippi’s Blackbelt Experiment Station agricultural test site in June 2008. The dataset 

has seven classes, each representing chemical stress on a corn crop [6]. The corn crop, 

grown under controlled conditions, was induced with varying degrees of chemical stress. 

61 



 

 

 

  

 

  

The crop was sprayed with seven different concentrations of Glufosinate herbicide 

diluted with water, where the seven classes or concentrations were (control) 1/32, 1/16, 

1/8, 1/4, 1/2, and 1 times the labeled rate of the herbicide concentrations. 

This dataset is acquired by using handheld Analytical Spectral Devices (ASD) 

sensor resulting in HSI datasets with 2151 bands. Note that all seven classes in this 

dataset represent the same species under varying degrees of stress, thus resulting in a very 

challenging classification problem. Table 4.1 shows the class names and number of 

samples considered for this experiment from each class.  The site where the data acquired 

is shown in Figure 4.1(b) and (c) along with the color map in 4.1(a). The hyperspectral 

signatures of stressed and healthy crop are shown in Figure 4.1(d) 
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Figure 4.1 Corn herbicide dataset 

(a) color map showing concentrations of herbicide (b) corn field (broad view) (c) corn 
field (narrow view) with ground truth points marked as blue dots (d) mean signature of 
crop under stress and healthy crop (Image Courtesy: Lori M. Bruce, Mississippi State 
University) 

63 



 

 

  

        

 
 

       

 

   

 

 

 

  

 

Table 4.1 Class names of corn stress data with number of samples from each class 

Class Name Control 1/32x 1/16x 1/8x 1/4x 1/2x 1x 

Number of 
Total Samples 

212 148 166 178 194 158 164 

4.1.2 Indian Pines Dataset - Agricultural Data 

The second experimental HSI dataset employed was acquired using NASA’s 

AVIRIS sensor and was collected over the Northwest Indiana’s Indian Pine test site in 

June 1992. The image represents a vegetation-classification scenario with 145x145 pixels 

and 220 bands in the 400 to 2450nm region of the visible and infrared spectrum. This 

dataset has 16 classes. 

Figure 4.2 (a) shows the pseudo colored version of the site, Figure 4.2(b) shows 

the ground truth, and 4.2(c) shows the class names for each regions in the ground truth. 

This is a standard dataset used to compare the performance of the proposed approach 

with the state-of-the-art techniques.  
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Figure 4.2 Indian pines dataset, ground truth and labels 

(a) Indian pines pseudo colored RGB image (b) Indian pines ground truth (c) Indian pines 
class labels 

4.1.3 Aquatic Plants Dataset - Simulated HyspIRI data 

The third dataset represents an aquatic invasive and native vegetation species 

dataset. The aquatic dataset consists of signatures from five different classes – Nelumbo 

(Nelumbonales), Waterhyacinth (Eichhornia crassipes), Duckweed (Araceae), Salvinia 

(Salviniaceae) and water. These aquatic species were grown under controlled conditions 

at Mississippi State University and the water samples are collected from the Oktibbeha 
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County Lake near Mississippi State University. Collecting these water samples is one of 

the contribution in this research work. The signatures of water are collected by using an 

ASD handheld hyperspectral sensor carried in a motor boat. The white reference values 

are recorded at multiple times and the water signatures are captured at various depths of 

the lake. This dataset represents a typical aquatic species (native/invasive) 

mapping/detection task.  Figure 4.3 illustrates the average sample proxy HyspIRI 

signatures from this dataset. The aquatic dataset has approximately 28 samples in each 

class and leave–one-out cross validation is employed for this dataset. 
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Figure 4.3 Mean signatures of various aquatic species and water 
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To simulate the HyspIRI data, existing ASD spectral signatures are mapped to the 

spectral specifications of HyspIRI. The spectral range of ASD is 350nm to 2500nm with 

a sampling interval of 1.4nm to 2nm. These specifications of ASD are suitable for 

simulating the HyspIRI signatures. The spectral range of HyspIRI is 380nm to 2500nm 

with a sampling interval of 10nm. A Gaussian-weighted averaging of every 21 successive 

ASD bands is performed to produce one proxy HyspIRI band. Detailed specifications of 

ASD and HyspIRI can be found in [2], [3].  Table 4.2 shows the class names and number 

of samples from each class used for the experiments. It can be observed that the training 

sample size is very small compared to other datasets. 

Table 4.2 Class names of aquatic species and number of available samples from each 
class 

Class Name Nelumbo Salvinia Duckweed Water Hyacinth Water 

Number of Total 
Samples 30 27 30 30 100 

4.1.4 Pavia, Italy Dataset - Urban Data 

The fourth dataset used has 102 spectral bands acquired by the ROSIS sensor over 

Pavia, Northern Italy [5][4]. This is a standard dataset used by the HSI research 

community and is used here to check the efficacy of the proposed approach with state-of-

the-art techniques from other research work. This data has 9 classes. The classes are 

Water, Trees, Asphalt, Self-Blocking Bricks, Bitumen, Tiles, Shadows, Meadows, and 

Bare soil. For this dataset, considering the very high number of samples from each class, 
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the model selection is conducted on a subset of training samples rather samples from each 

class. These model parameters are used to train the SVM classifiers. 

4.1.5 Corn Aflatoxin Dataset - Laboratory Data 

This dataset was created by Dr. Haibo Yao of Mississippi State University as part 

of the project funded by Gates foundation. The corn cobs were grown in Tifton, GA, 

USA. The toxigenic inoculant AF13 strain of A.flavus was obtained from the United 

States Department of Agriculture Southern Regional Research Center (USDA-SRRC) 

facility in New Orleans, LA, USA. The toxins are inoculated (field inoculation) into corn 

ears with a 12 gauge stainless needle. The inoculum was injected into each side of corn 

ears through the husk at an early stage. The corn kernels were harvested, dried, shucked 

and shelled into individual kernels. The kernels located near the inoculated point were 

selected as possibly contaminated and kernels located on the opposite side of the same 

corn ear were selected as control or reference. These kernels are then used for imaging. 

All these kernels were subjected to Aflatest analytical method from VICAM, Milford, 

MA, USA to measure the true aflatoxin levels and this enables them to use these HSI 

signatures as training points. A total of 504 corn kernels were collected for this study. 

As shown in Figure 4.4 (a), the individual kernels were placed on a flat plate for 

hyperspectral imaging. Each plate contained a maximum of 30 kernels and this plate is 

illuminated with a UV light source with a wavelength centered at 365nm. The UV lamp 

(Model XX-15A) used in this experiment was manufactured by Thermo Fisher Scientific 

Inc, Waltham, MA, USA. Figure 4.4 (b) show the class label truth map obtained through 

VICAM test. 
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Figure 4.4 Corn aflatoxin tray and ROIs 

(a) Example image of corn kernels under UV excitation on ceramic plate (b) different 
levels of aflatoxins represented as color map. 

A 14-bit PCO 1600 charge-coupled device (CCD) camera manufactured by 

Cooke Corporation, Romulus, MI, USA and Imspector v10E spectrograph manufactured 

by Spectral Imaging Ltd, Oulu, Finland are used for imaging. The spectrograph had 30 

micron entrance slit and a 35mm lens. Push broom line scanning was used and the HSI 

pixels were captured with a patented focal plane scanning method. The size of captured 

HSI cubes is 800x425x183 in spectral range of 400-600nm. Image preprocessing steps 

included dark current subtraction, wavelength assignment, and spectral low pass filtering 
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for noise removal. A region of interest (ROI) was created for each kernel representing the 

spatial area of a particular kernel. The spatial size of each image contained 800x425 

pixels [7]. Table 4.3 shows the range of aflatoxin classes and number of samples from 

each class considered for experiments. 

Table 4.3 Class names of corn aflatoxin with number of available samples from each 
class 

Class Name 0 – 0.1 >0.1 - 20 >20 - 100 >100 

Number of Total 
Samples 

11,193 23,169 11,884 24,799 

4.2 Experimental Setup 

The classification is performed using SVM with Gaussian Radial Basis Function 

(RBF) kernel for all experiments. The model selection for the SVM is performed using 

cross validation and grid search. An example of a grid search plot for the model selection 

of C and γ is shown in Figure 4.5. Optimization showed for Indian pines data with 10% 

training for the proposed NURFS approach. For all the datasets, the RBF parameters C 

and γ are estimated by selecting 10% of the training samples from each class and 

performing a grid search using cross validation, except for the Pavia dataset where we 

used 5% of the training data for the model selection. A confusion matrix for every 

classification problem is computed and the user, producer, and overall accuracies of 

different algorithms are compared. The statistical classifiers are standard Gaussian 

maximum likelihood with PCA and Fisher’s LDA. 
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Figure 4.5 Example of grid search plot for the model selection of C and γ. 

Optimization showed for Indian pines data with 10% training for the proposed NURFS 
approach 

4.3 Experimental Results 

The efficacy of the proposed approach is studied for the datasets described in 

Section 4.2. In Section 4.3.1, the state-of-the-art statistical classification techniques are 

studied. This establishes the bench marking of the statistical techniques with these 

datasets. A Gaussian maximum likelihood classifier (ML) is used with popular 

dimensionality reduction techniques such as principle component analysis (PCA) and 

linear discriminant analysis (LDA). In Section 4.3.2, the performance of the proposed 

NURFS and kernel density-based decision fusion is compared with other state-of-the-art 

single and multi-classifier configurations. In this study, the performance of a single SVM 
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classifier is profiled to demonstrate the compelling reasons to choose ensemble classifier 

configurations. On the ensemble classifier side, random feature selection (RFS) and 

configurations involving NURFS and kernel density decision fusion are studied 

independently. This demonstrates the effect of these two individual techniques on the 

overall, user, and producer accuracies. 

For all of the aforementioned algorithms, the effect of the user and producer 

accuracies are studied and compared with the proposed approach. In Section 4.3.3, the 

effect of various kernel density estimation windows are studied for the proposed system. 

This is to demonstrate the effect of different kernels on the overall classification. All of 

these experiments are conducted for a different number of training data. This 

demonstrates the requirement of the amount of training samples for every classifier 

configuration under study. Training data from 10% to 50 % is of particular interest in all 

the experiments except for the aquatic species data. For aquatic data, the number of 

samples is not adequate to perform jack knifing, thus leave n out cross validation is used. 

In particular, the value of n varying from one to five is studied. The experiments that use 

random feature selection are repeated 10 times and the average of the overall, user, and 

producer accuracies are reported. The deviations of these individual runs are reported as 

tables. Manhattan bars are used to report the change in the user and producer accuracies 

and line plots are employed for other studies. The results are reported with 95% 

confidence intervals marked as error bars. 

4.3.1 Comparison of state-of-the-art statistical single classifier techniques.  

The experimental results demonstrate mostly a similar trend with LDA-ML 

showing superior results compared to that of PCA-ML. For the corn stress data, the 
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overall accuracy with 10% of training is around 65% to 70%. With non-overlapping 

confidence intervals and almost equal number of training samples from each class, it is 

very clear that this is a problem of small sample size. Kernel-based classifiers such as 

SVM could handle this dataset better than the statistical ones. Figure 4.6 demonstrates the 

sensitivity of the number of training samples for PCA-ML and LDA-ML with corn 

herbicide stress dataset. 
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Figure 4.6 Comparison of the state-of-the-art statistical techniques with corn stress 
data 

A similar trend in terms of the overall accuracy is observed with the Indian pines 

dataset. With 220 features, this AVIRIS data has more number of training samples than 

others. However, there is an unequal number of training samples from each class. The 

73 



 

 

 

 

  

 

   

  

 

 
 

 

   

 

classes such as alfalfa and oats have a total of 46 and 20 samples respectively. With 10% 

of training from each class, the class probability densities have to be estimated with 

trifling number of training samples (4 and 2 respectively). This is clearly not adequate to 

estimate the densities of the class. As a result, the class accuracies suffer and thus 

reducing the overall accuracy to the range of 66% to 69%. The accuracies of the classes 

with a higher number of training samples are better so that the overall accuracy could 

reach 69%. Figure 4.7 shows the sensitivity of the ML with PCA and LDA feature 

reduction techniques to the number of training samples from each class. 
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Figure 4.7 Comparison of the state-of-the-art statistical techniques with Indian pines 
data 

With the aquatic species dataset, there are not enough samples from each class to 

perform jack knifing. Hence, leave n out cross validation is used to study the 

performance. The accuracies are in the range of 72% to 73% with leave-one-out. The 
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leave-one-out process is repeated for many times and the average results are reported in 

Figure 4.8. The confidence intervals are understandable large with a small number of 

samples. It is very difficult to conclude a clear winner among PCA-ML and LDA-ML 

because of the overlapping confidence intervals. However, this forms a clear 

understanding of the nature of the data and problem. 
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Figure 4.8 Comparison of state-of-the-art statistical techniques with aquatic species 
data 

Unlike the Indian pines data, the ROSIS Pavia data has almost an equal number of 

samples in every class. This is adequate enough to compute the class densities to a 

considerable amount of accuracy. This data exhibits an overall accuracy of 72% to 74% 

with 10 % of training data. This problem is relatively an easier one compared to the 
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Indian pines data. With Indian pines, the classes are representatives of similar agricultural 

crops but here it is an urban setup where the class densities are relatively easier to 

distinguish. This sensitivity study is shown in Figure 4.9. 
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Figure 4.9 Comparison of state-of-the-art statistical techniques with Pavia data 

Sensitivity experiments of statistical techniques with corn aflatoxin dataset yield 

poor results in terms of the overall accuracy. The reason for this is mainly because of the 

unequal number of training samples and difficulty of the problem. 

With the USDA regulations guidance, the levels of toxins are separated as 

different classes in a non-linear way and this makes some classes with a wide range of 

aflatoxins. Figure 4.10 shows the study with PCA-ML yielding an overall accuracy of 

52% with 10% of training data. 
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Figure 4.10 Comparison of state-of-the-art statistical techniques with corn aflatoxin 
data 

4.3.2 Comparison of the proposed approach with state-of-the-art single and 
multi-classifier kernel techniques 

The study of the sensitivity of various kernel based classifiers against different 

training sample sizes reveals an interesting pattern. The proposed approach handles the 

small sample size situation better than other approaches. Figure 4.11 shows a comparison 

study of the overall accuracy versus the number of training samples. Systems based on 

NURFS exhibit a 1.5 to 3% increase in the overall performance. It is worth pointing out 

that the performance of the kernel scoring NURFS algorithm is above 99% with a sample 

size of 10%, where the single SVM and original RFS algorithms produce an accuracy of 

approximately 93% and 95% respectively. Figures 4.12 and 4.13 illustrate the user and 

producer accuracies for each class in the Corn stress dataset. A similar increase in the 
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user and producer accuracies is observed as with many classes. The standard deviation is 

shown as error bars for the user and producer accuracies. The deviation is approximately 

0.1% for both the user and producer accuracies.  Table 4.4 show the details of different 

classifiers, feature selection and decision fusion techniques that are used in this 

comparison study. SVM and RFS are included as state of the art techniques, ‘Band 

grouping NURFS’ and ‘SVM & kernel density scoring’ are included in the study to test 

the efficacy of proposed feature selection and decision fusion techniques respectively. 

These four techniques are compared against the proposed ‘Kernel density NURFS’. 

Table 4.4 Classifiers, feature selection and decision fusion techniques used in the 
comparison study 

Classification Algorithm Feature Selection Decision Fusion Classifier Type 
SVM No N/A SVM - Single classifier 
RFS RFS Majority vote SVM - Ensemble classifier 

Band grouping NURFS NURFS Majority vote SVM - Ensemble classifier 
SVM & kernel scoring RFS Kernel scoring SVM - Ensemble classifier 
Kernel density NURFS NURFS Kernel scoring SVM - Ensemble classifier 
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Figure 4.11 Comparison of the proposed approach with its variations and other kernel-
based techniques with corn stress data 
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Figure 4.12 User Accuracies of different classes of corn herbicide stress data with 
various algorithms 

For each class, first bar corresponds to SVM, second bar corresponds to RFS, third bar 
corresponds to band grouping NURFS, fourth bar corresponds to SVM & kernel density 
scoring and the fifth bar corresponds to kernel scoring NURFS. 
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Figure 4.13 Producer Accuracies of different classes of corn herbicide stress data with 
various algorithms 

Both the user accuracies (UA) and producer accuracies (PA) are improved with 

the proposed feature selection. The overall accuracies of other feature selection 

approaches and other kernels are also shown. 

The SVM based classifier gives the advantage in terms of handling the small 

sample size. Further improvement is observed with the proposed NURFS approach and 

kernel density-based decision fusion independently. 

When combining both approaches, the overall accuracy is further improved and in 

very few cases unchanged. In Figure 4.14, a rectangular kernel is used to compute the 

density. 
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Figure 4.14 Comparison of the proposed approach with its variations and other kernel-
based techniques with Indian pines data 

With the Indian pines data, experimental results demonstrate the superiority of the 

proposed approach compared to SVM and RFS. The study of the overall accuracy for 

various numbers of training samples is shown in Figure 4.14. At 10% training, NURFS 

with a kernel density-based fusion achieved an overall accuracy of 93.7% with a 

rectangular kernel, and RFS and NURFS achieve 81.5% and 80.3% respectively. 

Interestingly, SVM with kernel scoring performs better than RFS and Band grouping-

based NURFS. The proposed kernel scoring based NURFS outperforms other approaches 

by 10%. The maximum overall accuracy achieved is 97.3% with 50% training. For all the 

experiments, an ensemble size of z=10 is used. It is observed that increasing the 

ensemble size does not provide any significant improvement beyond 8. This is similar to 

an observation made by Waske et al. [8] when using a simple RFS.  
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Figures 4.15 and 4.16 illustrate the user accuracies (UA) and producer accuracies 

(PA) for each class of the Indian Pines dataset. It is observed that consistent improvement 

(~ 2-40%) in both the user and producer accuracies throughout all classes occur when 

employing the proposed kernel density-based scoring approach. This is expected as the 

confusion between the classes is reduced via the proposed scoring approach. The 

standard deviation is shown as error bars for the user and producer accuracies. The 

deviation is approximately 0.8% for both the user and producer accuracies. 
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Figure 4.15 User Accuracies of different classes of Indian pines data with various 
algorithms 
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Figure 4.16 Producer Accuracies of different classes of Indian pines data with various 
algorithms 

As already mentioned, the aquatic species dataset has a smaller number of 

features per class compared to other datasets. The small sample size is obviously better 

handled by SVM. The proposed approach has an increase in the accuracy by 4% for leave 

one out. The gain of NURFS and kernel density decision fusion is not significant when 

considered independently. Figure 4.17 shows the comparison of various SVM based 

methods with the proposed approach. The accuracies reported in Figure 4.17 are arrived 

after averaging the accuracy of every leave n out run. 
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Figure 4.17 Comparison of the proposed approach with its variations and other kernel-
based techniques with aquatic species data 

The experimental results with the Pavia, Italy dataset show an improvement in the 

overall classification accuracy compared to other algorithms. Figure 4.18 shows the 

performance of the proposed approach under various percentage of the number of 

training samples. Kernel density-based NURFS achieves a gain of 7% and also performs 

well under limited training samples. Both Kernel density-based approaches combined 

with SVM and NURFS show superior performance over all the other approaches, and this 

shows the effectiveness of the proposed decision fusion approach. 
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Figure 4.18 Comparison of the proposed approach with its variations and other kernel-
based techniques with pavia data 

Figures 4.19 and 4.20 show the user and producer accuracies for each class of the 

Pavia dataset. Water, trees, bitumen, tiles, and bare soil classes gained an improvement of 

1 to 5%. This improvement can be seen from other kernel scoring techniques without 

feature selection. The standard deviation is shown as error bars for the user and producer 

accuracies. The deviation is approximately 0.2% for both the user and producer 

accuracies.  
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Figure 4.19 User accuracies of different classes of pavia data with various algorithms 

For each class, first bar corresponds to RFS, second bar corresponds to SVM, third bar 
corresponds to band grouping NURFS, fourth bar corresponds to kernel scoring NURFS 
and the fifth bar corresponds to SVM & kernel density scoring. 
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Figure 4.20 Producer accuracies of different classes of pavia data with various 
algorithms 

The most challenging among all the datasets is the corn aflatoxin. Because of the 

reasons already discussed, statistical algorithms perform very poorly with corn aflatoxin 

data.  The overall accuracy and user and producer accuracies are greatly improved with 

SVM classification. With the proposed approach, the overall accuracy is close to 75% 

with 10% of training data, which corresponds to approximately an increase of 6% from 

the single SVM. NURFS and kernel density decision fusion have good impact on this 

particular dataset with improved accuracies for all the classes. The sensitivity to different 

training size is shown in Figure 4.21. The improvements in the user and producer 

accuracies are presented in Figures 4.22 and 4.33 respectively. 
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Figure 4.21 Comparison of the proposed approach with its variations and other kernel-
based techniques with corn aflatoxin data 
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Figure 4.22 User accuracies of different classes of corn aflatoxin data with various 
algorithms 

For each class, first bar corresponds to SVM, second bar corresponds to RFS and the 
third bar corresponds to SVM & kernel density scoring. 
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Figure 4.23 Producer accuracies of different classes of corn aflatoxin data with various 
algorithms 

An increase in the class producer accuracies can be observed in Figure 4.23 in 

class 1 and class 3. There is an increase of 30% for class 1 and approximately 14% for 

class 3. A better performance is clearly achieved with NURFS and kernel density 

decision fusion combination. 

4.3.2.1 Impacts of NURFS and Kernel Density based decision fusion on the MCS 

The MCS proposed in Figure 3.5 has two different techniques to improve the 

efficacy of RFS. First, a NURFS system is proposed where the features are selected in a 

non-uniform fashion. This is depicted in Figure 3.3 and described in Section 3.2. Second, 

a decision fusion scheme based on kernel density estimation is described in Section 3.3. 

With various datasets described in Section 4.1, the experiments are conducted to study 
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the performance of the proposed approach compared to state-of-the-art techniques. It is 

interesting to study the impact of the proposed NURFS and decision fusion schemes 

when they are considered individually. The experimental results presented in Section 4.3 

demonstrate the above discussed impacts. In those plots, band grouping NURFS 

represents the effect of NURFS alone and SVM and kernel scoring represent the effect of 

the proposed decision fusion scheme alone in terms of the overall, user, and class 

accuracies. 

With corn stress data, the performance of NURFS has an improvement of about 

4% and the proposed decision fusion scheme gives an improvement of 5% with 10% 

training data.  The combination of both techniques offers a little more than 5% increase in 

the overall accuracy. It is also interesting to note that the user and producer accuracies of 

individual classes are improved for most of the cases consistently with the proposed 

approach. These amounts of improvement with these techniques depend on two factors, 

1) the amount of diversity in NURFS features and 2) the quality of kernel density 

estimation. Particularly, with decision fusion, the knowledge of the training data 

separability drives the decision of the final class label. So, the amount of available 

training data and its generalization capability play a vital role. This is evident from the 

results with the Indian pines and Pavia datasets. With almost an equal number of samples, 

the aquatic species dataset exhibits similar user and producer accuracies for all the classes 

(the user and producer accuracies are not reported since the accuracies are almost the 

same for each class). 
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Since the proposed feature selection approach is random in nature, each 

experiment is repeated for 10 times and the mean overall accuracy is reported. Tables 4.5 

and 4.6 show the mean and standard deviation of these runs for different datasets. 

Table 4.5 Mean and standard deviation of the NURFS classifier overall accuracy 

Training 
Sample 

Corn herbicide 
stress 

Indian pines Pavia Corn Aflatoxin 

Size in % Mean Standard Mean Standard Mean Standard Mean Standard 
deviation deviation deviation deviation 

10 96.95 0.2038 92.88 0.7206 91.71 0.5282 75.23 0.7242 

20 97.36 0.0994 94.84 1.5072 93.39 0.3673 76.50 0.4389 

30 99.53 0.1299 95.17 0.5217 95.52 0.3903 76.93 0.5696 

40 99.14 0.2408 96.07 0.5186 96.31 0.2979 79.07 0.2540 

50 99.11 0.1152 97.24 0.3213 96.94 0.3809 78.92 0.7346 

Table 4.6 Mean and standard deviation of the NURFS classifier overall accuracy 
(aquatic dataset) 

Number of samples 
for testing 

1 2 3 4 5 

Mean 88.69 88.47 87.12 85.72 84.88 

Standard 
Deviation 

1.0928 0.3335 0.4732 0.5181 0.6321 

4.3.3 Sensitivity to density estimation kernels 

Four kernel window functions are used in this study to determine their effect on 

the proposed approach. Although there is not much of a difference in class accuracies 

(the class accuracies are not reported here as there is no significant improvement), the 
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overall accuracy in some cases increased and/or decreased by 3% for different kernel 

functions. This is particularly significant for Indian pines and aquatic species datasets. 

Figures 4.24 to 4.28 demonstrate the effect of different kernels on the overall accuracy 

with different training sample sizes. The kernel corresponding to the best overall 

accuracy at 10% training is reported in Figures 4.11, 4.14, 4.17, 4.18, and 4.21. 
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Figure 4.24 Sensitivity of the proposed approach with different kernel functions to the 
number of training samples with Corn Stress data 
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Figure 4.25 Sensitivity of the proposed approach with different kernel functions to the 
number of training samples with Indian pines data 

The study of the performance of various algorithms with respect to the sample 

size follows a very interesting trend. The proposed approach clearly outperforms other 

techniques. Figure 4.25 shows the comparison of various kernel functions with respect to 

the number of training samples used for training. In this case, the rectangular and 

triangular kernels perform almost equally well compared to normal and Epanechikov. 

The error bars shown correspond to 95% confidence intervals. From experimentation, it 

is found that the performance of the classifier increases with an increase in the number of 

band groups, m initially, and it decreases after reaching a particular value. In order to 

maintain uniformity among various experiments, the value of m=4 is used, this yields the 

best performance for all the datasets. From experimentation, it is found that the 
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performance of the classifier increases with increasing m initially and it decreases after 

reaching a particular value. 
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Figure 4.26 Sensitivity of the proposed approach with different kernel functions to the 
number of training samples with aquatic species data 
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Figure 4.27 Sensitivity of the proposed approach with different kernel functions to the 
number of training samples with pavia data 
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Figure 4.28 Sensitivity of the proposed approach with different kernel functions to the 
number of training samples with corn aflatoxin data 
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CHAPTER V 

ROLE OF DIVERSITY IN ENSEMBLE CLASSIFICATION OF HYPERSPECTRAL 

DATA 

5.1 Introduction 

For pattern classification problems, employing more than one classifier is well 

established and a widely used technique for improving the performance. This technique is 

often referred to multi classifier systems (MCS), ensemble classification, and mixture of 

experts or committees of learners. The development of ensemble classifiers for HSI data 

is discussed in Section 2.3 of this dissertation. The most important reason for the success 

of ensemble classification is the diversity of classifiers or learners. For example, an 

ensemble consists of two similar classifiers producing the same classification label for 

every sample has no serious benefit over a single classifier. Methods for achieving this 

diversity can be broadly grouped into two categories: 1) an ensemble with different 

classifiers and same training data, and 2) an ensemble with the same classifier but 

different subsets of training data. The focus of this dissertation is on the second category. 

Subset creation methods based on bagging, boosting, and its variants are shown to 

perform well in terms of the overall classification accuracy [1]–[4]. However with HSI 

data, the scope of these techniques are shown to be rather limited [5], [6]. Since the HSI 

data often has more features or spectral bands than the number of training samples, 
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having an ensemble with the same classifier and different spectral subsets of features is of 

obvious interest. 

The MCS proposed in [7] is shown to have the diverse subset of features through 

random feature selection (RFS). In [8], a multi classifier decision fusion system is 

proposed with different maximum likelihood classifiers learning different part of HSI 

bands and shown to perform very well when compared to other statistical techniques. In 

this approach, the diversity is achieved by having totally different bands fed to each 

classifier. Every ensemble classification technique described in [9] achieves this diversity 

by one of the above mentioned techniques.  Krogh et al. [10] recognize diversity as an 

inevitable characteristic of an ensemble neural network classifier. Cunningham et al. [11] 

demonstrate the importance of monitoring diversity in ensemble classifiers by using 

entropy measures. Theoretical issues, implementation of classifier combinations, and 

diversity are discussed by Lam [12]. So, it is very clear that diversity plays a vital role in 

any ensemble classification system. 

In spite of recognizing the importance of diversity, there is no clear definition for 

this term. There are some simple techniques for measuring diversity such as a Hamming 

distance between two classifiers. The Hamming distance is directly proportional to the 

disagreement between any two vectors. This could be useful in some simple cases and 

with only two classifiers. However, there is no clear way to measure the diversity for 

MCS with more than two classifiers. There are some pairwise dissimilarity measures 

described in the literature and these are shown to be useful in coarsely estimating the 

diversity [13]. Among many statistics described in [13], the simplest ones were chosen to 

study the diversity between the proposed NURFS and RFS. Yule’s Q-statistics [14], 

100 



 

 

  

    

   

  

  

  

 

    

   

    

   

   

   

     

    

    

 

correlation coefficient [14][15], disagreement measure [16], [17], and double fault 

measure [18] are popularly used for measuring the diversity of a pair of classifiers.  The 

overall diversity can be computed by averaging. In this chapter, various pair wise 

diversity measures are employed to study and compare the ability of the RFS and 

proposed Non-Uniform RFS methods to produce diverse HSI subsets. 

5.2 Measures of Diversity 

As mentioned earlier, there is no clear definition for diversity in the literature. 

Various researchers use statistical dissimilarity or similarity measures to estimate this 

diversity. To define these statistics, let us consider the super class Ω described in Section 

3.2 that consists of labeled training for training the classifier. The output of any classifier 

in ensemble Zi can be represented as a vector of length N, where the size of Ω is 

represented as N, which is given by Equation 5.1 

𝑛 𝑁 = ∑𝑖=1 𝑁𝑖 (5.1) 

For each sample that is recognized correctly by a classifier Zi , a vote will be 

added to the matrix shown in Table 5.1 and no vote will be added for incorrect 

classification. This is represented in Table 5.1 for any pair of classifiers Zi and Zk. 

Table 5.1 Vote table for pair wise ensemble diversity computation 

Zk correct (vote = +1) Zk incorrect (no vote ) 

Zi correct (vote = +1) N11 N10 

Zi incorrect (no vote ) N01 N00 
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The total number of training samples N is given by, 

𝑁 = 𝑁11 + 𝑁10 + 𝑁01 + 𝑁00 (5.2) 

Yule’s Q statistic (Q) can be defined for two classifiers Zi and Zk as 

𝑁11𝑁00− 𝑁01𝑁10 
𝑄𝑖,𝑘 = (5.3)

𝑁11𝑁00+𝑁01𝑁10 

The lower the value of Q, the greater the diversity between classifiers. The range 

for Q is from -1 to 1. The correlation coefficient (ρ) for any two classifiers is defined as, 

𝑁11𝑁00−𝑁01𝑁10 
𝜌𝑖,𝑘 = (5.4)

√(𝑁11+𝑁10)(𝑁01+𝑁00)(𝑁11+𝑁01)(𝑁10+𝑁00) 

The lower the value of ρ, the greater the diversity between classifiers. The 

disagreement measure (DIS) used in [16], [17] for any two classifiers is defined as 

𝑁01+𝑁10 
𝐷𝐼𝑆𝑖,𝑘 = (5.5)

𝑁 

This measure is an estimate of the ration of the number of disagreements to the 

total number of samples. With DIS, the higher the disagreements between the two 

classifiers is, the greater the diversity. 

The double fault measure (DF) used in [18] for any two classifiers is defined as 

𝐷𝐹𝑖,𝑘 = 𝑁00 
(5.6)

𝑁 

Equations 5.3 to 5.6 provide pair wise measures and for Z classifiers in the 

ensemble (Z ≥ 3), the average measure can be calculated by Equation 5.7 

2 𝑍−1 𝑍 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ ∑𝑘=𝑖+1 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑖,𝑘 (5.7)𝑖=1 𝑍(𝑍−1) 
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5.3 Experimental Results 

To investigate the effect of RFS and NURFS feature selection techniques on the 

diversity of individual classifiers, Qaverage, ρaverage, and DISaverage are computed for 

ensembles of size 10. The corn herbicide stress dataset and Indian pines dataset are 

considered for this study with different training sample sizes. It is found that the Q 

statistic is very consistent for almost all the cases. With the corn and Indian pines data 

having 7 and 16 classes respectively, it is very difficult to achieve the best diversity of -1 

as the higher the classes are, it will be more difficult to achieve best diversity [13]. 

Except for two cases, the diversity exhibited by the proposed NURFS is better than the 

regular RFS algorithm. Among the 5 experiments conducted on each data, the average of 

Q across these experiments is approximately -0.6 for the corn herbicide data and -0.5 for 

the Indian pines data. These values are slightly higher than that of the regular RFS. This 

is demonstrated in Figures 5.1 and 5.2. 
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Figure 5.1 Q-Statistics measure for the corn herbicide data 

Lower score indicates greater diversity 
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Figure 5.2 Q-Statistics measure for the Indian pines data 

Lower score indicates greater diversity 
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Figures 5.3 and 5.4 show the plots of the correlation coefficient measure for the 

corn herbicide and Indian pines data. The results show that the NURFS algorithm 

provides better diversity than that of RFS. The results are mostly consistent for almost all 

the experiments. 
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Figure 5.3 Correlation coefficient measures for the corn herbicide data 

Lower score indicates greater diversity 
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Figure 5.4 Correlation coefficient measures for the Indian pines data 

Lower score indicates greater diversity 

Figures 5.5 and 5.6 show the plots of disagreement measure for the corn herbicide 

and Indian pines data, respectively. This measure gives the ratio of classifiers disagreeing 

to the total number of classifiers, so the higher the value of this measure, the greater the 

diversity between classifiers. 
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Figure 5.5 Disagreement measures for the corn herbicide data 

Higher score indicates greater diversity 
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Figure 5.6 Disagreement measures for the Indian pines data 

Higher score indicates greater diversity 
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The results clearly show that the proposed NURFS gives better ensemble 

diversity than the regular RFS algorithm. All the three measures are mostly consistent 

with the results. Unlike other measures, there is no practical upper limit for this measure 

as it depends on the number of samples and number of classes. 

5.4 Difficulties and challenges 

The diversity measures discussed in Section 5.2 are statistical approaches that rely 

on a simple accuracy of each classifier with respect to a given test sample. This may not 

represent the diversity in a true sense. Optimizing the individual classifiers in a MCS 

based on diversification is still not possible because that requires some techniques that 

can connect the accuracy of classifiers with ensemble diversity. The techniques discussed 

in this section provide a crude estimate of the classifier diversity and this is independent 

of the overall accuracy of the individual classifiers and overall accuracy. The main 

drawback with the current setup is that the diversification does not necessarily guarantee 

an optimized ensemble. This is largely due to disconnect between diversity and accuracy. 

This is observed through experiments and is reported in Section 5.3. In certain cases, 

improvement of class accuracies in the confusion matrix is of great interest. For such 

cases, a class wise diversity measure could be really useful. In the literature, there is no 

such a method available. This is an important area in ensemble classification that requires 

lot of research. An approach similar to the  kernel density score matrix discussed in 

Section 3.3 is proposed by Ranawana [19] for estimating class wise specialties of the 

ensemble. This approach assigns a rank to a collection of classifiers based on its ability to 

distinguish different output classes. The problem again with this approach is its ability to 

connect the diversification of classifiers with class accuracies.   
108 



 

 

  

 
  

 
   

  
 

 

 

 

 

 
   

 

 

 

 
 

 
 

  
   

 
 

5.5 References 

[1] Y. F. and R. E. Schapire, “Experiments with a new boosting algorithm,” in 13th 
International conference on Machine Learning, 1996. 

[2] R. Schapire, “Theoretical Views of Boosting and Applications,” in Algorithmic 
Learning Theory SE - 2, vol. 1720, O. Watanabe and T. Yokomori, Eds. Springer 
Berlin Heidelberg, 1999, pp. 13–25. 

[3] H. Drucker, C. Cortes, L. D. Jackel, Y. LeCun, and V. Vapnik, “Boosting and 
Other Ensemble Methods,” Neural Comput., vol. 6, no. 6, pp. 1289–1301, Nov. 
1994. 

[4] E. Bauer and R. Kohavi, “An Empirical Comparison of Voting Classification 
Algorithms: Bagging, Boosting, and Variants,” Mach. Learn., vol. 36, no. 1–2, 
pp. 105–139, 1999. 

[5] X. Ceamanos, B. Waske, J. Benediktsson, J. Chanussot, and J. Sveinsson, 
“Ensemble Strategies for Classifying Hyperspectral Remote Sensing Data,” in 
Multiple Classifier Systems SE  - 7, vol. 5519, J. Benediktsson, J. Kittler, and F. 
Roli, Eds. Springer Berlin Heidelberg, 2009, pp. 62–71. 

[6] P. Du, W. Zhang, and H. Sun, “Multiple Classifier Combination for Hyperspectral 
Remote Sensing Image Classification,” in Multiple Classifier Systems SE - 6, vol. 
5519, J. Benediktsson, J. Kittler, and F. Roli, Eds. Springer Berlin Heidelberg, 
2009, pp. 52–61. 

[7] B. Waske, S. van der Linden, J. A. Benediktsson, A. Rabe, and P. Hostert, 
“Sensitivity of Support Vector Machines to Random Feature Selection in 
Classification of Hyperspectral Data,” Geosci. Remote Sensing, IEEE Trans., vol. 
48, no. 7, pp. 2880–2889, 2010. 

[8] S. Prasad, L. M. Bruce, and H. Kalluri, “A Robust Multi-Classifier Decision 
Fusion Framework for Hyperspectral, Multi-Temporal Classification,” in 
Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008. IEEE 
International, 2008, vol. 2, pp. II–273–II–276. 

[9] J. Benediktsson, J. Kittler, and R. Fabio, Eds., Multiple Classifier Systems. 
Reykjavik: Springer, Lecture notes in Computer Science, 2009. 

[10] A. Krogh and J. Vedelsby, “Neural Network Ensembles, Cross Validation, and 
Active Learning,” Adv. Neural Inf. Process. Syst. MIT Press, 1995. 

[11] P. Cunningham and J. Carney, “Diversity versus Quality in Classification 
Ensembles Based on Feature Selection,” in Machine Learning: ECML 2000 SE  -
12, vol. 1810, R. López de Mántaras and E. Plaza, Eds. Springer Berlin 
Heidelberg, 2000, pp. 109–116. 

109 



 

 

 

 

  
 

 

 
 

 
 

  
 

  
 

  
 

 

 
 

 

 

[12] L. Lam, “Classifier Combinations: Implementations and Theoretical Issues,” in 
Multiple Classifier Systems SE  - 7, vol. 1857, Springer Berlin Heidelberg, 2000, 
pp. 77–86. 

[13] L. Kuncheva and C. Whitaker, “Measures of Diversity in Classifier Ensembles 
and Their Relationship with the Ensemble Accuracy,” Mach. Learn., vol. 51, no. 
2, pp. 181–207, 2003. 

[14] A. Afifi and S. Azen, Statistical Analysis : A Computer Oriented Approach, 
Second Edi. Academic Press, 1979. 

[15] L. Kuncheva, Fuzzy Classifier Design, Studies in Fuzziness and Soft Computing. 
Springer Verlag Heidelberg, 2000, p. 315P. 

[16] D. B. Skalak, “The Sources of Increased Accuracy for Two Proposed Boosting 
Algorithms,” in American Association for Arti Intelligence, Integrating Multiple 
Learned Models Workshop, 1996, pp. 120–125. 

[17] T. K. Ho, “The Random Subspace Method for Constructing Decision Forests,” 
IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832–844, 1998. 

[18] G. Giacinto and F. Roli, “Design of effective neural network ensembles for image 
classification purposes,” Image Vis. Comput., vol. 19, no. 9–10, pp. 699–707, 
Aug. 2001. 

[19] R. Ranawana, “Intelligent Multi-Classifier Design Methods for the Classification 
of Imbalanced Data Sets: Application to DNA Sequence analysis,” University of 
Oxford, 2007. 

110 



 

 

 

 

  

  

  

 

 

 

 

CHAPTER VI 

CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

A new multi classifier system is proposed with a non-uniform feature selection 

and kernel density-based decision fusion. The proposed feature selection approach 

divides the HSI spectrum into different regions based on a band grouping algorithm. The 

features are then randomly selected from each group and the features selected from every 

group are concatenated to form the final subset. The number of features selected from 

any band group is proportional to the size of the group. The probability density of 

individual training classes are estimated using kernel density estimation and this 

information is used to determine the distance between classes. This information is used to 

form a score matrix where each score represents the ability of each classifier to 

distinguish a particular class from all other classes. The scores are then used for decision 

fusion. The proposed framework was tested on four different datasets each representing a 

different kind of a classification problem. With all the datasets, it was shown that the 

non-uniform random feature selection combined with kernel density decision fusion 

offers very high classification accuracies when compared to other state-of-the-art 

techniques. The impacts of the proposed feature selection and decision fusion techniques 

are studied individually. These studies revealed the impact of the two proposed 

techniques. A non-invasive system for classifying the corn kernels based on different 
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aflatoxin levels is also proposed in this work. Diversity is an essential part of every 

ensemble classification system. The diversity of classifier outputs are studied using 

different measures. Although these measures cannot be used for optimizing the system 

design, they provide a coarse understanding of diversity created by the proposed feature 

selection approach when compared to a simple random feature selection. 

To compare the performance of state-of-the-art statistical techniques with 

different HSI data, a maximum likelihood classifier is employed with linear discriminant 

and principal component analysis. This demonstrates the level of difficulty of the four 

classification problems under study. Then, the proposed approach is compared with state-

of-the-art kernel classifiers. A single SVM, RFS, and variations of the proposed NURFS 

are compared. To demonstrate the suitability of the NURFS framework, three different 

types of experiments are conducted: 1) Study the sensitivity of the proposed approach to 

the amount of training samples, 2) Study the improvement of individual class accuracies, 

and 3) Study the effect of different kernel functions used to estimate the probability 

density function of classes in decision fusion. The proposed MCS’ performance is shown 

to be superior compared to other methods. Especially with a small number of training 

samples for all the four HSI data under study, the kernel density NURFS outperforms the 

other techniques. It was evident that this system is better at handling smaller training 

sample sizes. The class accuracies from the confusion matrices showed a considerable 

improvement across all the classes of different HSI data under study. More importantly, 

in very few cases the class accuracies showed an inferior performance compared to other 

standard techniques. The experiments with different kernel functions for estimating the 

density revealed an interesting pattern. There is no common kernel function that works 
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well with every data. Although this is data dependent, the difference in the overall 

accuracy is minimal for different kernel functions. 

Experimental results with corn aflatoxin detection showed promising results with 

target class achieving very high accuracies. One can conclude that this approach is very 

effective for different data sets with a small number of training samples. 

6.2 Suggested Future Work 

The proposed kernel density NURFS system is very powerful for problems with a 

small training sample size. It would be interesting to study the performance of this 

approach to different multi spectral data from remote sensing and medical applications. 

In this dissertation, the proposed approach is tested for data with pure pixels. It would be 

interesting to study the performance of the proposed approach under mixed pixel 

situations. 

Incorporating the spatial/vicinal information in classification applications such as 

aflatoxin detection and identifying herbicide stress. This can be achieved by post 

processing on class labels or classification map. 

The band grouping approach used in this dissertation is based on metrics such as 

correlation and Bhattacharya distance. The studies could be extended with more 

advanced band grouping techniques such as Dirichlet process variable clustering.  
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