6 research outputs found

    1D Camera Geometry and Its Application to Circular Motion Estimation

    Full text link

    Line Based Camera Calibration In Machine Vision Dynamic Applications

    Get PDF
    The problem of dynamic camera calibration considering moving objects in close range environments using straight lines as references is addressed. A mathematical model for the correspondence of a straight line in the object and image spaces is discussed. This model is based on the equivalence between the vector normal to the interpretation plane in the image space and the vector normal to the rotated interpretation plane in the object space. In order to solve the dynamic camera calibration, Kalman Filtering is applied; an iterative process based on the recursive property of the Kalman Filter is defined, using the sequentially estimated camera orientation parameters to feedback the feature extraction process in the image. For the dynamic case, e.g. an image sequence of a moving object, a state prediction and a covariance matrix for the next instant is obtained using the available estimates and the system model. Filtered state estimates can be computed from these predicted estimates using the Kalman Filtering approach and based on the system model parameters with good quality, for each instant of an image sequence. The proposed approach was tested with simulated and real data. Experiments with real data were carried out in a controlled environment, considering a sequence of images of a moving cube in a linear trajectory over a flat surface.10210010

    Efficient optical camera tracking in virtual sets

    Full text link

    Theoretical and Numerical Analysis of 3D Reconstruction Using Point and Line Incidences

    Full text link
    We study the joint image of lines incident to points, meaning the set of image tuples obtained from fixed cameras observing a varying 3D point-line incidence. We prove a formula for the number of complex critical points of the triangulation problem that aims to compute a 3D point-line incidence from noisy images. Our formula works for an arbitrary number of images and measures the intrinsic difficulty of this triangulation. Additionally, we conduct numerical experiments using homotopy continuation methods, comparing different approaches of triangulation of such incidences. In our setup, exploiting the incidence relations gives both a faster point reconstruction and in three views more accurate.Comment: 27 pages, 5 Figures, 3 table

    Affine Structure from Line Correspondences with Uncalibrated Affine Cameras

    Get PDF
    This paper presents a linear algorithm for recovering 3D affine shape and motion from line correspondences with uncalibrated affine cameras. The algorithm requires a minimum of seven line correspondences over three views. The key idea is the introduction of a one-dimensional projective camera. This converts 3D affine reconstruction of "line directions" into 2D projective reconstruction of "points". In addition, a line-based factorisation method is also proposed to handle redundant views. Experimental results both on simulated and real image sequences validate the robustness and the accuracy of the algorithm

    Affine Structure from Line Correspondences with Uncalibrated Affine Cameras

    No full text
    This paper presents a linear algorithm for recovering 3D affine shape and motion from line correspondences with uncalibrated affine cameras. The algorithm requires a minimum of seven line correspondences over three views. The key idea is the introduction of a one-dimensional projective camera. This converts 3D affine reconstruction of "line directions" into 2D projective reconstruction of "points". In addition, a line-based factorisation method is also proposed to handle redundant views. Experimental results both on simulated and real image sequences validate the robustness and the accuracy of the algorithm
    corecore