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Affine Structure from Line Correspondences with
Uncalibrated Affine Cameras

Long QUAN and Takeo KANADE

Abstract— This paper presents a linear algorithm for recov-
ering 3D affine shape and motion from line correspondences
with uncalibrated affine cameras. The algorithm requires
a minimum of seven line correspondences over three views.
The key idea is the introduction of a one-dimensional projec-
tive camera. This converts 3D affine reconstruction of “line
directions” into 2D projective reconstruction of “points”. In
addition, a line-based factorisation method is also proposed
to handle redundant views. Experimental results both on
simulated and real image sequences validate the robustness
and the accuracy of the algorithm.

Key-words: structure from motion, affine structure,
factorisation method, line correspondence, affine camera,
one-dimensional camera, uncalibrated image.

I. INTRODUCTION

Using line segments instead of points as features has at-
tracted the attention of many researchers [1], [2], [3], [4],
[5], [6], [7], [8], [9] for various tasks such as pose estima-
tion, stereo and structure from motion. In this paper, we
are interested in structure from motion using line corre-
spondences across mutiple images. Line-based algorithms
are generally more difficult than point-based ones for the
following two reasons. The parameter space of lines is non
linear, though lines themselves are linear subspaces, and a
line-to-line correspondence contains less information than
a point-to-point one as it provides only one component of
the image plane displacement instead of two for a point
correspondence. A minimum of three views is essential for
line correspondences, whereas two views suffice for point
ones. In the case of calibrated perspective cameras, the
main results on structure from line correspondences were
established in [4], [10], [5]: With at least six line correspon-
dences over three views, nonlinear algorithms are possible.
With at least thirteen lines over three views, a linear algo-
rithm is possible. The basic idea of the thirteen-line linear
algorithm is similar to the “eight-point” one [11] in that
it is based on the introduction of a redundant set of inter-
mediate parameters. This significant over-parametrization
of the problem leads to the instability of the algorithm re-
ported in [4]. The thirteen-line algorithm was extended to
uncalibrated camera case in [12], [9]. The situation here
might be expected to be better, as more free parameters
are introduced. However, the 27 tensor components that
are introduced as intermediate parameters are still sub-
ject to 8 complicated algebraic constraints. The algorithm
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can hardly be stable. A subsequent nonlinear optimization
step is almost unavoidable to refine the solution [5], [4],
[10], [12].

In parallel, there has been a lot of work [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [14], [16], [23], [17], [24], [25]
on structure from motion with simplified camera models
varing from orthographic projections via weak and para-
perspective to affine cameras, almost exclusively for point
features. These simplified camera models provide a good
approximation to perpsective projection when the width
and depth of the object are small compared to the viewing
distance. More importantly, they expose the ambiguities
that arise when perspective effects diminish. In such cases,
it is not only easier to use these simplified models but also
advisable to do so, as by explicitly eliminating the ambigu-
ities from the algorithm, one avoids computing parameters
that are inherently ill-conditioned. Another important ad-
vantage of working with uncalibrated affine cameras is that
the reconstruction is affine, rather than projective as with
uncalibrated projective cameras.

Motivated on the one hand by the lack of satisfactory line-
based algorithms for projective cameras and on the other
by the fact that the affine camera is a good model for many
practical cases, we investigate the properties of projection
of lines by affine cameras and propose a linear algorithm for
affine structure from line correspondences. The key idea is
the introduction of a one-dimensional projective camera.
This converts the 3D affine reconstruction of “line direc-
tions” into 2D projective reconstruction of “points”. The
linear algorithm requires a minimum of seven lines over
three images. We also prove that seven lines over three im-
ages is the strict minimum data needed for affine structure
from uncalibrated affine cameras and that there are always
two possible solutions. This result extends the previous re-
sults of Koenderink and Van Doorn [14] for affine structure
with a minimum of two views and five points. To deal with
redundant views, we also present a line-based factorisation
algorithm which extends the previous point-based factori-
sation methods [18], [21], [22]. A preliminary version of
this work was presented in [26].

The paper is organized as follows. In Section II, the affine
camera model is briefly reviewed. Then, we investigate
the properties of projection of lines with the affine cam-
era and introduce the one-dimensional projective camera
in Section ITI. Section IV is focused on the study of the un-
calibrated one-dimensional camera, and in this section we
present also a linear algorithm for 2D projective reconstruc-
tion which is equivalent to the 3D affine reconstruction of



line directions. Later, the linear estimation of the transla-
tional component of the uncalibrated affine camera is given
in Section V and the affine shape recovery is described in
Section VI. To handle redundant views, a line-based fac-
torisation method is proposed in Section IX. The passage
to metric structure from the affine structure using known
camera parameters will be described in Section XI. Finally
in Section XIII, discussions and some concluding remarks
are given.

Throughout the paper, tensors and matrices are denoted
in upper case boldface, vectors in lower case boldface and
scalars in either plain letters or lower case Greek.

II. REVIEW OF THE AFFINE CAMERA MODEL

For a projective (pin-hole) camera, the projection of a point
x = (z,9,2,t)T of P? to a point w = (u,v,w)? of P? can
be described by a 3 x 4 homogeneous projection matrix
P3yxa:

AW = P3,x. (1)
For a restricted class of camera models, by setting the third
row of the perspective camera P3,4 to (0,0,0,)), we ob-
tain the affine camera initially introduced by Mundy and
Zisserman [27],

P11 P12 P13 P14
Asyws = [p21 p22 p23 Pos
0 0 0 psa
M
- ( M t3x1>. (2)
1x3

The affine camera Ajzx4 encompasses the uncalibrated
versions of the orthographic, weak perspective and para-
perspective projection models. These reduced camera
models provide a good approximation to the perspective
projection model when the depth of the object is small
compared to the viewing distance. For more detailed rela-
tions and applications, one can refer to [20], [22], [?], [28],
[13].

For points in the affine spaces IR® and IR?, they are nat-
urally embedded into P3 and P? by the mappings w, —
w = (w,,1)T and x, = x = (x4,1)T. We have thus

Wo = Max3X, + to,
where to = (t1/ts,t2/ts)T = (p1a/psa,poa/p3a)T. If we
further use relative coordinates of the points with respect
to a given reference point (for instance, the centroid of the
set of points), the vector tg is cancelled and we obtain the
following linear mapping between space points and image
points:

Aw, = May3AX,. (3)

This is the basic equation of the affine camera for points.

III. THE AFFINE CAMERA FOR LINES

Now consider a line in IR? through a point xg, with direc-
tion d:
X, = Xg + Ad,, for A € R.

The affine camera Ajzx4 projects this to an image line

Asya (X1a> =

= wg+ AMosysd,

(May3xq + to) + AMay3d,

passing through the image point
wo = Max3Xo + to,

with direction

dy = AMayxsd,. (4)
This equation describes a linear mapping between direc-
tion vectors of 3D lines and those of 2D lines, and reflects
a key property of the affine camera: lines parallel in 3D
remain parallel in the image. It can be derived even more
directly using projective geometry by considering that the
line direction d, is the point at infinity x,, = (dZ,0)T of
the projective line in P and the line direction d,, is the
point at infinity wo, = (dZ,0)T of the projective line in
P2. Equation (4) immediately follows as the affine camera
preserves the points at infinity by its very definition.

Comparing Equation (4) with Equation (1)—a projection
from P? to P?, we see that Equation (4) is nothing but a
projective projection from P? to P! if we consider the 3D
and 2D “line directions” as 2D and 1D projective “points”.
This key observation allows us to establish the following.

The affine reconstruction of line directions with a two-
dimensional affine camera is equivalent to the projective
reconstruction of points with a one-dimensional projective
camera.

One of the major remaining efforts will be concerned with
2D projective reconstruction from the points in P!. There
have been many recent works [29], [30], [31], [32], [33], [34],
[35], [36], [37), [38], [39], [40], [10], [7], [41] on projective
reconstruction and the geometry of multi-views of two di-
mensional uncalibrated projective cameras. Particularly,
the tensorial formalism developed by Triggs [35] is very in-
teresting and powerful. We now extend this study to the
case of the one-dimensional camera. It turns out that there
are some nice properties which were absent in the 2D case.

IV. UNCALIBRATED ONE-DIMENSIONAL CAMERA
A. Trilinear tensor of the three views

First, rewrite Equation (4) in the following form:

Au = Maysx (5)

in which we use u = (uy,u2)” and x = (1, z2,23)7 instead
of dy, and d, to stress that we are dealing with “points”



in the projective spaces P? and P! rather than “line direc-
tions” in the vector spaces IR3 and IR2.

We now examine the matching constraints between multi-
ple views of the same point. Since two viewing lines in the
projective plane always intersect in a point, no constraint is
possible for less than three views. There is one constraint
only for the case of 3 views. Let the three views of the
same point x be given as follows:

Au = Mx,
M = Mk, (6)
AIIuII — M”X.

These can be rewritten in matrix form as

X

M u 0 0 Y
M 0 u 0 v | = 0, (7
M 0 0 u” Y

which is the basic reconstruction equation for a one-
dimensional camera. The vector (x, —A, —=A’, —A")T cannot
be zero, so

M u 0 0
M 0 u 0 =0 8)
M" 0 0 u”

The expansion of this determinant produces a trilinear con-
straint of three views

2

} : r,.n
T,'jkuiujuk = 0, (9)
i,j,k=1

or in short
1.1
Toxoxeuu'u’ =0,

where Tayoxo = (Tijx) is a 2 x 2 X 2 homogeneous tensor
whose components Tj;;, are 3 x 3 minors of the following
6 x 3 joint projection matrix:

1

2
M 1
M” = | o (10)
M

1//

2//

The components of the tensor can be made explicit as

Tijk = [ij'k"], for 4,5, k" = 1,2. (11)
where the bracket [ij'k"] denotes the 3 x 3 minor of i-
th,j’-th and k"-th row vector of the above joint projection
matrix and bar “”” in ¢, j and k denotes the dualization

(1,2) = (2,-1). (12)

It can easily be seen that any constraint obtained by
adding further views reduces to a trilinearity. This proves
the uniqueness of the trilinear constraint. Moreover, the
2 x 2 x 2 homogeneous tensor Toxox2 has 7=2x2x2—-1
d.o.f., so it is a minimal parametrization of three views
since three views have exactly

3x(2x3-1)-(3%x3-1)=7

d.o.f. up to a projective transformation in P2.

Each point correspondence over three views gives one linear
constraint on the tensor components T;;;,. We can establish
the following.

The tensor components T;j can be estimated linearly with
at least 7 points in PL.

At this point, we have obtained a remarkable result that for
a one-dimensional projective camera, the trilinear tensor
encapsulates exactly the information needed for projective
reconstruction in P2. Namely, it is the unique matching
constraint, it minimally parametrizes the three views and
it can be estimated linearly. Contrast this to the 2D pro-
jective camera case in which the multilinear constraints are
algebraically redundant and the linear estimation is only an
approximation based on over-parametrization.

B. Retrieving normal forms for projection matrices

The geometry of the three views is most conveniently, and
completely represented by the projection matrices associ-
ated with each view. In the previous section, the trilinear
tensor was expressed in terms of the projection matrices.
Now we seek a map from the trilinear tensor representation
back to the projection matrix representation of the three
views.

Without loss of generality, we can always take the following
normal forms for the three projection matrices

M = (Lx 0),
M = (A2 ¢) = (a b ¢, (13)
M” = (D2x2 f) = (d e f) .

Actually, the set of projection matrices {M,M' ,M"}
parametrized this way has 10 d.o.f.—still 3 more than the
minimum of 7. Further constraints can be imposed. We
can observe that any projective transformation in P2 of the

form
_(Izxa O
a- ()

for an arbitrary 2-vector v leaves M invariant and trans-
forms M’ into

M':M'H:(A+ch c):(A c).

As ¢ cannot be a zero vector, it can be normalized such
that ¢Tec = 1. If we further choose an arbitrary vector v
to be —ATc, then A = A — ccTA. Tt can now be easily
verified that ATc = 0. This amounts to saying that A in



M’ can be taken to be a rank 1 matrix up to a projective
transformation, i.e.
A=(m P
as paz

for a non-zero scalar p. The 2-vector c is then (—as,a;)7.
Hence M’ can be represented as

M = ai —az2
as paz ai
by two parameters, the ratio a; : as and p. Therefore, a

minimal 7 parameter representation for the set of projec-
tion matrices {M, M', M"} has been obtained.

With the projection matrices given by (13), the trilinear
tensor (T;;i) defined by (11) becomes

pa (14)

/\T’ijk = (_1)i+1(dl_cz'cj - ajz'fl_c) for i7j7k = 1727 (15)

[l

where bar in j and k represents the dulization (12).

If we consider the tensor (Tj;;) as an 8-vector

(ti,. sty ... tg)T, forl = 15—(4k+2j+i) and i, 4,k = 1,2,
the eight homogeneous equations of (15) can be rearranged
into 7 non-homogeneous ones by taking the ratios t; : tg for
l=1,...,7. By separating the entries of M’ from those of
M", we obtain

d
G7><6 e = 0, (16)
f
where the matrix G7 g is given by
0 tgca —tic1 0 t1b1 —tsas
0 0 —ta2c1 tgca tab1 —tgbo
0 —tgcy —t3c1 0 t3b1 tgal
0 0 —t4c1 —tgcy taby tgby
—tgco 0 —tscy 0 tgas + tyby 0
0 0 —tgc1 — tgeca 0 tgba + tgb1 0
tgcy 0 —trecr 0 —tgay + t7by 0

Since the parameter vector (d, e, f)T of M" cannot be zero,
the 7 x 6 matrix in Equation (16) has at most rank 5. Thus
all of its 6 x 6 minors must vanish. There are 2 = (6 — 5) x
(7 — 5) such minors which are algebraically independent,
and each of them gives a quadratic polynomial in a1, as
and p as follows:

=

tgpar — tgay — t1pas + teaz =
trpa; —tgay — tspas +teaz = 0.

By eliminating p, we obtain a homogeneous quadratic equa-
tion in a1 and as:

aaf + Bajas + 'yag =0, an

where
a = t3t8 — t4t7,
B = tatr 4+ tsts — tits —t3ts
¥ = t1t6 - t2t5.

This quadratic equation may be easily solved for a;/as.
Then p is given by the following linear equation for each of
two solutions of a1 /as

(t3a1 - t1a2)p + (t2a2 — t4a1) =0. (18)

Thus, we obtain two possible solutions for the projection
matrix M.

Finally, the 6-vector (d, e, f) for the projection matrix M"
is linearly solved from Equation (16) (for instance, using
SVD) in terms of M'.

C. 2D projective reconstruction—3D affine line direction
reconstruction

With the complete determination of the projection matri-
ces {M,M' ,M"} of the three views, the projective recon-
struction of “points” in P2, which is equivalent to the affine
reconstruction of “line directions” in IR®, can be performed.

From the projection equation Au = Mx, each point of a
view u = (u1,u2)T gives one homogeneous linear equation
in the unknown point x in P?

(ulmg — usz)x =0,

where m{ and mI are the first and second row vector of
the matrix M. With one point correspondence in three
views u < u’ + u”, we have the following homogeneous
linear equation system,

* k%
* k% x =0,
* k%

where * designates a constant entry. This equation system
can be easily solved for x, either considered as a point in
P2 or as an affine line direction in IR3.

V. UNCALIBRATED TRANSLATIONS

To recover the full affine structure of the lines, we still
need to find the vectors t3y; of the affine cameras defined
in (2). These represent the image translations and magni-
fication components of the camera. Recall that line corre-
spondences from two views—now a 2D view instead of 1D
view—do not impose any constraints on camera motion:
The minimum number of views required is three. If the
interpretation plane of an image line for a given view is de-
fined as the plane going through the line and the projection
center, the well-known geometric interpretation of the con-
straint available for each line correspondence across three
views (c¢f. [3], [5]) is that the interpretation planes from
different views must intersect in a common line in space.



If the equation of a line in the image is given by

1Tu=0,
then substituting Au = Asx4x into it produces the equa-
tion of the interpretation plane of 1 in space:

17A5,4x = 0.

The plane is therefore given by the 4-vector p? =17 A3y,
which can also be expressed as p” = (n,,p)T where n, is
the normal vector of the plane.

An image line of direction n, can be written as 1 =
(ny,,1)T, with its interpretation plane being
p’ =1"P = (M"n,,,17t)". (19)
The 2 x 3 submatrices Myx3 representing uncalibrated
camera orientations have already been obtained from the
two-dimensional projective reconstruction. Now we pro-
ceed to recover the uncalibrated translations.
For each interpretation plane (ng,p)? of each image line,
its direction component is completely determined by the
previously computed {M,M', M"} as

n, = M'n,,.

Only its fourth component p = 17t remains undetermined.
This depends linearly on t. Notice that as the direction
vector can still be arbitrarily and individually rescaled, the
interpretation plane should be properly written as

pl = OMTn,, ul*t)T.

Hence the ratio A/p is significant, and this justifies the
homogenization of the vector t.

So far we have made explicit the equation of the interpre-
tation planes of lines in terms of the image line and the
projection matrix, the geometric constraint of line corre-
spondences on the camera motion gives a 3 x 4 matrix
whose rows are the three interpretation planes

p’ ngM 1Tt

p/T — n/TM/ lth/
w

pIIT nz]TM// llthII

which has rank at most two. Hence all of its 3 x 3 mi-
nors vanish. Only two of the total of four minors are
algebraically independent, as they are connected by the
quadratic identities [42].

The vanishing of any two such minors provides the two
constraints on camera motion for a given line correspon-
dence of three views. The minor formed by the first three
columns contains only known quantities. It provides the
constraint on the directions. It is easy to show that it is
equivalent to the tensor by using suitable one-dimensional
projective transformations.

By taking any two of the first three columns, say the first
two, and the last column, we obtain the following vanishing
determinant:

x % 1Tt
x x 1Tt | =0,
x % llthII

where the “x” designates a constant entry.

Expanding this minor by cofactors in the last column gives
a homogeneous linear equation in t, t' and t":

where the “x” designates a constant 3-vector in a row.

Collecting all these vanishing minors together, we obtain

X X X t
: t/ =0
° "
X X X t
nx9

for n line correspondences in three views.

At this stage, since the origin of the coordinate frame in
space is not yet fixed, we may take t = (0,0,1)7 up to
a scaling factor, say tg, so the final homogeneous linear
equations to solve for (to,t’, t”)T is

*x X X tO

S t' | =o. (20)
tII

*x X X nxT

This system of homogeneous linear equations can be nicely
solved by SvD factorisation. The least squares solution for
(to,t',t" )T subject to ||(to, t',t")T|| = 1 is the right singu-
lar vector corresponding to the smallest singular value.

VI. AFFINE SHAPE

The projection matrices of the three views are now com-
pletely determined up to a common scaling factor. From
now on, it is a relatively easy task to compute the affine
shape. Two methods to obtain the shape will be described,
one based on the projective representation of lines and an-
other on the minimal representation of lines, inspired by

[5]-
A. Method 1: projective representation

A projective line in space can be defined either by a pencil
of planes (a pencil of planes is defined by two projective
planes) or by any two of its points.

The matrix
T

— 1T
WP = P
nrT

ke

°



should have rank 2, so its kernel must also have dimension
2. The range of Wp defines the pencil of planes and the
null space defines the projective line in space.

Once again, using SVD to factorize W p gives us everything
we want. Let
Wp =UpZpVE

be the SvD of Wp with ordered singular values. Two
points of the line might be taken to be vs and vy, so the
line is given by

Avs + pvy for A\ p € RR. (21)
One advantage of this method is that, using subset selection
[43], near singular views can be detected and discarded.

B. Method 2: Minimal representation

As a space line has 4 d.o.f., it can be minimally represented
by four parameters. One such possibility is suggested by [5]
which uses a 4-vector 17 = (a, b, 29, 40)” such that the line
is defined as the intersection of two planes (1,0, —a, —z¢)”
and (0,1, —b, —y)T with equations:

r=az2+ 2o
y = bz + yo.

Geometrically this minimal representation gives a 3D line
with direction (a,b,1)7 and passing through the point
(70,%0,0)T. This representation excludes, therefore, the
lines of direction (a, b,0)”, parallel to the zy plane. Two
other representations are needed, each excluding either the
directions (0,b,¢)T or (a,0,c¢)T. These 3 representations
together completely describe any line in space.

In our case, we have no problem in automatically selecting
one of the three representations, as the directions of lines
have been obtained in the first step of factorisation, allow-
ing us to switch to one of the three representations. There
remain only two unknown parameters xo and yo for each
line.

To get a solution for xzg and yo, as the two planes
(1,0, —a, —z0)T and (0,1, —b, —yo)T defining the line be-
long to the pencil of planes defined by Wp, we can still
stack these two planes on the top of Wp to get the matrix
Wi

*
*
*
&

* % XZg * x kYo
WIP — * * * Yo — X k3 k3
Wp

* k% % *

Since this matrix still has rank 2, all its 3 x 3 minors vanish.
Each minor involving z¢ and yo gives a linear equation in xg
and yo. With n views, a linear equation system is obtained

Zo
A =b
nx2 (yo)

This can be nicely solved using least squares for each line.

(22)

VII. AFFINE-STRUCTURE-FROM-LINES THEOREM

Summarizing the results obtained above, we have estab-
lished the following.

For the recovery of affine shape and affine motion from
line correspondences with an uncalibrated affine camera,
the minimum number of views needed is three and the min-
imum number of lines required is seven for a linear solu-
tion. There are always two solutions for the recovered affine
structure.

This result can be compared with that of Koenderink and
Van Doorn [14] for affine structure with a minimum of two
views and five points.

We should also note the difference with the well-known re-
sults established for both calibrated and uncalibrated pro-
jective cameras [3], [4], [5], [38]: A minimum of 13 lines in
three views is required to have a linear solution. It is im-
portant to note that with the affine camera and the method
presented in this paper, the number of line correspondences
for achieving a linear solution is reduced from 13 to 7, which
is of great practical importance.

VIII. OUTLINE OF THE 7-LINE X 3-VIEW ALGORITHM

The linear algorithm to recover 3D affine shape/motion
from at least 7 line correspondences over three views with
uncalibrated affine cameras may be outlined as follows:

1. If an image line segment is represented by its end-
points wi = (u1,v1)? and wy = (u2,v2)?, compute
the direction vector of the line n,, = uy — u;. View
this as the homogeneous coordinates of a point in P*.

2. Compute the tensor components (Tj;;) defined by
Equation (9) linearly with at least 7 lines in 3 views.

3. Retrieve the projection matrices {M,M', M"} of the
one-dimensional camera from the estimated tensor us-
ing Equations (17), (18) and (16). There are always
two solutions.

4. Perform 2D projective reconstruction using equa-
tion (7) which recovers the directions of the affine lines
in space and the uncalibrated rotations of the camera
motion.

5. Solve the uncalibrated translation vector (t,t’,t")T
using Equation (20) by linear least squares.

6. Compute the final affine lines in space using Equa-
tion (21) or (22).

IX. LINE-BASED FACTORISATION METHOD FROM AN
IMAGE STREAM

The linear affine reconstruction algorithm described above
deals with redundant lines, but is limited to three views.
In this section we discuss redundant views, extending the
algorithm from the minimum of three to any number N > 3
of views.

In the past few years, a family of algorithms for struc-
ture from motion using highly redundant image sequences
called factorisation methods have been extensively studied



[18], [19], [20], [21], [22] for point correspondences for affine
cameras. Algorithms of this family directly decompose the
feature points of the image stream into object shape and
camera motion. More recently, a factorisation based algo-
rithm has been proposed by Triggs and Sturm [35], [36] for
3D projective reconstruction. We will accomodate our line-
based algorithm to this projective factorisation schema to
handle redundant views.

A. 2D projective reconstruction by rescaling

According to [35], [36], 3D projective reconstruction is
equivalent to the rescaling of the 2D image points. We
have already proven that recovering the directions of affine
lines in space is equivalent to 2D projective reconstruction
from one-dimensional projective images. Therefore, a re-
construction of the line directions in 3D can be obtained
by rescaling the direction vectors, viewed as points of P!.

For each 1D image point in three views (¢f. Equation (6)),
the scale factors A\, \' and \'—taken individually—are ar-
bitrary. However, taken as a whole (A, X', A")T, they en-
code the projective structure of the points x in P2.

One way to recover the scale factors (A, M, X)T is to use
the basic reconstruction equation (7) directly or alterna-
tively to observe the following matrix identity:

M Au M
M’ )\'u’ = M’ (ngg X) .
MII AIIuII MII

The rank of the left matrix is therefore at most 3. All 4 x 4
minors vanish, and three (3 = (4 — 3) x (6 — 3)) of them
are algebraically independent, for instance,

M Au

M Nu' = 0,
M A
‘ M N = 0,
M Au

mi M = 0.
mlll Ay

Each of them can be expanded by cofactors in the last col-
umn to obtain a linear homogeneous equation in A, A, A",
Therefore (A, X', A")T can be solved linearly using

" A
AN =0,
AII

(23)

where * designate a known constant entry in the matrix.

For each triplet of views, the image points can be consis-
tently rescaled according to Equation (23). For the case
of n > 3 views, we can take appropriate triplets among
n views such that each view is contained in at least two
triplets. Then, the rescaling equations of all triplets of
views for any given point can be chained together over n
views to give a consistent (A, X', ..., A(M)T,

B. Direction factorisation—step 1

Suppose we are given m line correspondences in n views.
The view number is indexed by a superscript and the line
number by a subscript. We can now create the 2n x m
measurement matrix Wp of all lines in all views by stack-

ing all the direction vectors ng) properly rescaled by /\z(j)
of m lines in n views as follows:

)\ldwl )\2dw2 )\mdwm
Ay, Aady, Amdip,,

Wp = : : :
AvdE) Al o el

Since the following matrix equation holds for the measure-
ment matrix W p:

WD:MDDD: dwm)a

M'(n)

the rank of Wp is at most of three. The factorisation

method can then be applied to Wp.

Let

Wp=UpEpVE
be the SvD factorisation (c¢f. [43], [44]) of Wp. The 3 x 3
diagonal matrix ¥ ps is obtained by keeping the first three
singular values (assuming that singular values are ordered)
of ¥ and Ups (Vps3) are the first 3 columns (rows) of U
(V).
Then, the product UpzX D3V£3 gives the best rank 3 ap-
proximation to Wp.

One possible solution for M and D may be taken to be
M =Ups%if and D =312V

For any nonsingular 3 x 3 matrix Ajz.3—either considered
as a projective transformation in P2 or as an affine trans-
formation in R3, M’ = MAgsy3 and D' = A3 1, D are also
valid solutions, as we have

MAA~'D = M'D' = MD.
This means that the recovered direction matrix D and the

rotation matrix M are only defined up to an affine trans-
formation.

C. Translation factorisation—Step 2

We can stack all of the interpretation planes from different
views of a given line to form the following n x 4 measure-
ment matrix of planes:

* ok % 17¢
* lth/
Wp =

% % 1WT¢0)



This matrix Wp geometrically represents a pencil of
planes, so it still has rank at most 2. For any three rows
i, j and k of Wp, taking any minor involving the t(* we
obtain

1T ¢
1T (&)
1) T ¢ (k)

* K
=0.

L

Expanding this minor by cofactors in the last column gives
a homogeneous linear equation in t(9, t() and t(*):

t ()
@)
t(k)

(x x x =0,

where each “x” designates a constant 3-vector in a row.

Collecting all these minors together, we obtain

x x x 0 0 --- 0 0 O t
0 x x x 0 --- 0 0 O t’

=0.
000 00 -+ x x X t(

We may take t = (0,0,1)7 up to a scaling factor, say
to, so the final homogeneous linear equations to solve for
(to,t', ..., ()T are

to
tl
Wr| . | =
£(n)
x x x 0 0 0 0 O to
0 x x x 0 0 0 O t’
. . | =0.
0 0 0 0 O X X X £

Once again, this system of equations can be nicely solved
by SvD factorisation of Wr. The least squares solution
for (to,t',...,t0N7T subject to ||(to,t',t",--)T|| =1, is
the singular vector corresponding to the smallest singular
value of Wr.

Note that the efficiency of the computation can be fur-
ther improved if the block diagonal structure of W is
exploited.

D. Shape factorisation—Step 3

The shape reconstruction method developed for three views
extends directly to more than 3 views. Given n views, for
each line across n views, we just augment the matrix W,
from a 3 x 4 to n x 4 matrix, then apply exactly the same
method.

X. OUTLINE OF THE LINE-BASED FACTORISATION
ALGORITHM

The line-based factorisation algorithm can be outlined as
follows:

1. For triplets of views, compute the tensor (T;;) asso-
ciated with each triplet, then rescale the directions of
lines of the triplet using Equation (23).

2. Chain together all the rescal-
ing factors (A, \,...,A(")T for each line across the
sequence.

3. Factorise the rescaled measurement matrix of direc-
tions

Wp =UTV”

to get the uncalibrated rotations and the directions of
the affine lines

M = (ula us, u3)diag(0;/2, 0.;/2’ 0;/2)3
D = diag(aim,a;/z,a;/z)(vl,v%w).

4. Factorise the measurement matrix using the con-
straints on the motion

W =UzV?
to get the uncalibrated translation vector
(tAOa £5 s 7£(n))T = V3(n—-1)+1-

5. Factorise the measurement matrix of the interpreta-
tion planes for each line correspondence over all views

Wp=UxV7T

to get two points of the line

X1 =vs and X = vj.
XI. EUCLIDEAN STRUCTURE FROM THE CALIBRATED
AFFINE CAMERA

So far we have worked with an uncalibrated affine camera,
the recovered shape and motion are defined up to an affine
transformation in space. If the cameras are calibrated, then
the affine structure can be converted into a Euclidean one
up to an unknown global scale factor.

Following the decomposition of the submatrix Mays of
the affine camera A3y as M = KR introduced in [22],
the metric information from the calibrated affine camera
is completely contained in the affine intrinsic parameters
KKT. Each view WitTh the associated uncalibrated rota-
tion matrix M = (
my
mIXXTm? m7XXTml\ KKT

m{ XX"ml mIXXTmi)/ ~

is subject to

for the unknown affine transformation X which upgrades
the affine structure to a Euclidiean one. A linear solu-
tion may be expected as soon as we have three views if we



solve for the entries of XX7. However it may happen that
the linear estimate of XX7 is not positive-definite due to
noise. An alternative non-linear solution using Cholesky
parametrization that ensures the positive-definiteness can
be found in [22].

Once we obtain the appropriate X, then MX and X~1D
carry the rotations of the camera and the directions of lines.
The remaining steps are the same as the uncalibrated affine
camera case.

If we take the weak perspective as a particular affine camera
model, with only the aspect ratio of the camera, Euclidean
structure is obtained this way.

XII. EXPERIMENTAL RESULTS
A. Simulation setup

We first use simulated images to validate the theoretical de-
velopment of the algorithm. To preserve realism, the simu-
lation is set up as follows. First, a real camera is calibrated
by placing a known object of about 50 ¢m? in front of the
camera. The camera is moved around the object through
different positions. A calibration procedure gives the pro-
jection matrices at different positions, and these projection
matrices are rounded to affine projection matrices. Three
different positions which cover roughly 45° of the field of
view are selected. A set of 3D line segments within a cube
of 30 ¢m? is generated synthetically and projected onto the
different image planes by the affine projection matrices. All
simulated images are of size 512 x 512. Both 3D and 2D
line segments are represented by their endpoints.

The noise-free line segments are then perturbed as follows.
To take advantage of the relatively higher accuracy of line
position obtained by the line fitting process in practice,
each 2D line segment is first re-sampled into a list of evenly
spaced points of the line segment. The position of each
point is perturbed by varying levels of noise of uniform
distribution. The final perturbed line is obtained by a least
squares fit to the perturbed point data.

Reconstruction is performed with 21 line segments and two
different re-sample rates. The average residual error is de-
fined to be the average distance of the midpoint of the
image line segment to the reprojected line in the image
plane from the 3D reconstructed line. In Table I, the aver-
age residual errors of reconstruction are given with various
noise levels. The number of points used to fit the line
is the length of the line segment in pixels, this re-sample
rate corresponds roughly to the digitization process. Ta-
ble IT shows the results with the number of points used
to fit the line equal to only one fourth the length of the
line segment. We can notice that the degradation with the
increasing noise level is very graceful and the reconstruc-
tion results remain acceptable with up to £5.5 pixel noise.
These good results show that the reconstruction algorithm
is numerically stable. While comparing Table I and II, it
shows that higher re-sample rate gives better results, this
confirms the importance of the line fitting procedure—the

key advantage of line features over point features.

Another influential factor for the stability of the algorithm
is the number of lines used. Table IIT confirms that the
more lines used, the better the results obtained. In this
test, the pixel error is set to +1.5.

Lines # 8 13 17 21
Average residual error | 1.9 | 1.6 | 0.59 | 0.26

TABLE III
AVERAGE RESIDUAL ERRORS OF RECONSTRUCTION WITH =+ 1.5 PIXEL

NOISE AND VARIOUS NUMBER OF LINES.

B. The experiment with real images

A Fujinon/Photometrics CCD camera is used to aquire a
sequence of images of a box of size 12 x 12 x 12.65¢m. The
image resolution is 576 x 384. Three of the frames in the
sequence used by the experiments are shown in Figure 1.

A Canny-like edge detector is first applied to each image.
The contour points are then linked and fitted to line seg-
ments by least squares. The line correspondences across
three views are selected by hand. There are a total of 46
lines selected, as shown in Figure 2.

Fig. 2. Line segments selected across the image sequence.

The reconstruction algorithm generates infinite 3D lines,
each defined by two arbitrary points on it. 3D line seg-
ments are obtained as follows. We reproject 3D lines into
one image plane. In the image plane selected, the corre-
sponding original image line segments are orthogonally pro-
jected onto the reprojected lines to obtain the reprojected
line segments. Finally by back-projecting the reprojected
line segments to space, we obtain the 3D line segments,
each defined by its two endpoints.

Excellent reconstruction results are obtained. An average
residual error of one tenth of a pixel is achieved. Figure 3
shows two views of the reconstructed 3D line segments.
We notice that the affine structure of the box is almost
perfectly recovered.

Table IV shows the influence of the number of line segments



Noise +0.5 | £1.5 | £2.5 | £3.5 | £4.5 | £5.5
Average residual error | 0.045 | 0.061 | 0.10 0.15 0.20 0.25
TABLE I

AVERAGE RESIDUAL ERRORS WITH VARIOUS NOISE LEVELS FOR THE RECONSTRUCTION WITH 21 LINES OVER THREE VIEWS. THE NUMBER OF

POINTS TO FIT THE LINE IS THE LENGTH OF THE LINE SEGMENT IN PIXELS.

Noise +0.5 | £1.5 | £2.5 | £3.5 | £4.5 | £5.5
Average residual error | 0.077 | 0.26 0.31 0.44 | 0.65 1.1
TABLE II

AVERAGE RESIDUAL ERRORS OF RECONSTRUCTION WITH VARIOUS NOISE LEVELS. THE NUMBER OF POINTS TO FIT THE LINE SEGMENT IS ONE

FOURTH THE LENGTH OF THE LINE SEGMENT.

Fig. 1. Three original images of the box used for the experiments.

used by the algorithm. The reconstruction results degrade
gracefully with decreasing number of lines.

Lines # 10 20 30 46
Average residual error | 1.3 | 0.88 | 0.28 | 0.12
TABLE IV

TABLE OF RESIDUAL ERRORS OF RECONSTRUCTION WITH DIFFERENT
NUMBER OF LINE SEGMENTS.

Table V shows the influence of the distribution of line seg-
ments in space. For instance, one degenerate case for struc-
ture from motion is that when all line segments in space lie
on the same plane. Actually, in our images, line segments
lie on three different planes—pentagon face, star shape face
and rectangle face—of the box. We also performed experi-
ments with line segments lying on only two planes. Table V
shows the results with various different two-plane configu-
rations. Compared with the three-plane configuration, the
reconstruction algorithm does almost equally well.

To illustrate the effect of using affine camera model as an
approximation to the perspective camera, we used a bigger
cube of size 30 x 30 x 30c¢m, which is two and a half times
the size of the first smaller cube. The affine approxima-
tion to the perspective camera is becoming less accurate
than it was with the smaller cube. A sequence of images
of this cube is aquired in almost the same conditions as for
the smaller cube. The perspective effect of the big cube
is slightly more pronounced as shown in Figure 4. The
configuration of line segments is preserved. A total of 39
line segments of three views is used to perform the recon-
struction. Figure 5 illustrates two reprojected views of the
reconstructed 3D line segments. Compared with Figure 3,
the reconstruction is slightly degraded: in the top view of

Figure 5, we notice that one segment falls a little apart
from the pentagon face of the cube. Globally, the degrada-
tion is quite graceful as the average residual error is only
0.3 pixels, compared with 0.12 pixels for the smaller cube.

The affine structures obtained can be converted to Eu-
clidean ones (up to a global scaling factor) as soon as we
know the aspect ratio [22], which is actually 1 for the cam-
era used. Figure 6 shows the rectified affine shape illus-
trated in Figure 3. The two sides of the box are accurately
orthogonal to each other.

XIII. DISCUSSION

A linear line-based structure from motion algorithm for
uncalibrated affine cameras has been presented. The al-
gorithm requires a minimum of seven line correspondences
over three views. It has also been proven that seven lines
over three views are the strict minimum data needed to re-
cover affine structure with uncalibrated affine cameras. In
other words, in contrast to projective cameras, the linear
algorithm is not based on the over-parametrization. This
gives the algorithm intrinsic stability. The previous results
of Koenderink and Van Doorn [14] on affine structure from
motion using point correspondences are therefore extended
to line correspondences. To handle the case of redundant
views, a factorisation method was also developed. The ex-
perimental results based on real and simulated image se-
quences demonstrate the accuracy and the stability of the
algorithms.

As the algorithms presented in this paper are developed
within the same framework as suggested in [22] for points,
it is straightforward to integrate both points and lines into
the same framework.



Line configuration star+rect.4pent. | star+4rect. | pent.+rect. | star4pent
Average residual error 0.12 0.078 0.14 0.28
TABLE V
TABLE OF RESIDUAL ERRORS OF RECONSTRUCTION WITH DIFFERENT DATA.

Fig. 3.

view.

Reconstructed 3D line segments: a general view and a top

Fig. 5. Two views of the reconstructed line segments for the big box:
a general view and a top view.
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Fig. 4. One original image of the big cube image sequence

Fig. 6.

known aspect ratio of the camera.

A side view of the Euclidean shape obtained by using the
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