708 research outputs found

    Active Fault Tolerant Control of Livestock Stable Ventilation System

    Get PDF

    Model-based fault diagnosis for aerospace systems: a survey

    No full text
    http://pig.sagepub.com/content/early/2012/01/06/0954410011421717International audienceThis survey of model-based fault diagnosis focuses on those methods that are applicable to aerospace systems. To highlight the characteristics of aerospace models, generic nonlinear dynamical modeling from flight mechanics is recalled and a unifying representation of sensor and actuator faults is presented. An extensive bibliographical review supports a description of the key points of fault detection methods that rely on analytical redundancy. The approaches that best suit the constraints of the field are emphasized and recommendations for future developments in in-flight fault diagnosis are provided

    Distributed Set-Based Observers Using Diffusion Strategy

    Full text link
    Distributed estimation is more robust against single points of failure and requires less communication overhead compared to the centralized version. Among distributed estimation techniques, set-based estimation has gained much attention as it provides estimation guarantees for safety-critical applications and copes with unknown but bounded uncertainties. We propose two distributed set-based observers using interval-based and set-membership approaches for a linear discrete-time dynamical system with bounded modeling and measurement uncertainties. Both algorithms utilize a new over-approximating zonotopes intersection step named the set-based diffusion step. We use the term diffusion since our intersection of zonotopes formula resembles the traditional diffusion step in the stochastic Kalman filter. Our new zonotopes intersection takes linear time. Our set-based diffusion step decreases the estimation errors and the size of estimated sets and can be seen as a lightweight approach to achieve partial consensus between the distributed estimated sets. Every node shares its measurement with its neighbor in the measurement update step. The neighbors intersect their estimated sets constituting our proposed set-based diffusion step. We represent sets as zonotopes since they compactly represent high-dimensional sets, and they are closed under linear mapping and Minkowski addition. The applicability of our algorithms is demonstrated by a localization example. All used data and code to recreate our findings are publicly availabl

    Supervisory fault tolerant control of the NASA airstar aircraft

    Get PDF

    A study on fault diagnosis in nonlinear dynamic systems with uncertainties

    Full text link
    In this draft, fault diagnosis in nonlinear dynamic systems is addressed. The objective of this work is to establish a framework, in which not only model-based but also data-driven and machine learning based fault diagnosis strategies can be uniformly handled. Instead of the well-established input-output and the associated state space models, stable image and kernel representations are adopted in our work as the basic process model forms. Based on it, the nominal system dynamics can then be modelled as a lower-dimensional manifold embedded in the process data space. To achieve a reliable fault detection as a classification problem, projection technique is a capable tool. For nonlinear dynamic systems, we propose to construct projection systems in the well-established framework of Hamiltonian systems and by means of the normalised image and kernel representations. For nonlinear dynamic systems, process data form a non-Euclidean space. Consequently, the norm-based distance defined in Hilbert space is not suitable to measure the distance from a data vector to the manifold of the nominal dynamics. To deal with this issue, we propose to use a Bregman divergence, a measure of difference between two points in a space, as a solution. Moreover, for our purpose of achieving a performance-oriented fault detection, the Bregman divergences adopted in our work are defined by Hamiltonian functions. This scheme not only enables to realise the performance-oriented fault detection, but also uncovers the information geometric aspect of our work. The last part of our work is devoted to the kernel representation based fault detection and uncertainty estimation that can be equivalently used for fault estimation. It is demonstrated that the projection onto the manifold of uncertainty data, together with the correspondingly defined Bregman divergence, is also capable for fault detection

    Throughput-Distortion Computation Of Generic Matrix Multiplication: Toward A Computation Channel For Digital Signal Processing Systems

    Get PDF
    The generic matrix multiply (GEMM) function is the core element of high-performance linear algebra libraries used in many computationally-demanding digital signal processing (DSP) systems. We propose an acceleration technique for GEMM based on dynamically adjusting the imprecision (distortion) of computation. Our technique employs adaptive scalar companding and rounding to input matrix blocks followed by two forms of packing in floating-point that allow for concurrent calculation of multiple results. Since the adaptive companding process controls the increase of concurrency (via packing), the increase in processing throughput (and the corresponding increase in distortion) depends on the input data statistics. To demonstrate this, we derive the optimal throughput-distortion control framework for GEMM for the broad class of zero-mean, independent identically distributed, input sources. Our approach converts matrix multiplication in programmable processors into a computation channel: when increasing the processing throughput, the output noise (error) increases due to (i) coarser quantization and (ii) computational errors caused by exceeding the machine-precision limitations. We show that, under certain distortion in the GEMM computation, the proposed framework can significantly surpass 100% of the peak performance of a given processor. The practical benefits of our proposal are shown in a face recognition system and a multi-layer perceptron system trained for metadata learning from a large music feature database.Comment: IEEE Transactions on Signal Processing (vol. 60, 2012

    Optimal tracking control for uncertain nonlinear systems with prescribed performance via critic-only ADP

    Get PDF
    This paper addresses the tracking control problem for a class of nonlinear systems described by Euler-Lagrange equations with uncertain system parameters. The proposed control scheme is capable of guaranteeing prescribed performance from two aspects: 1) A special parameter estimator with prescribed performance properties is embedded in the control scheme. The estimator not only ensures the exponential convergence of the estimation errors under relaxed excitation conditions but also can restrict all estimates to pre-determined bounds during the whole estimation process; 2) The proposed controller can strictly guarantee the user-defined performance specifications on tracking errors, including convergence rate, maximum overshoot, and residual set. More importantly, it has the optimizing ability for the trade-off between performance and control cost. A state transformation method is employed to transform the constrained optimal tracking control problem to an unconstrained stationary optimal problem. Then a critic-only adaptive dynamic programming algorithm is designed to approximate the solution of the Hamilton-Jacobi-Bellman equation and the corresponding optimal control policy. Uniformly ultimately bounded stability is guaranteed via Lyapunov-based stability analysis. Finally, numerical simulation results demonstrate the effectiveness of the proposed control scheme

    System identification and adaptive current balancing ON/OFF control of DC-DC switch mode power converter

    Get PDF
    PhD ThesisReliability becomes more and more important in industrial application of Switch Mode Power Converters (SMPCs). A poorly performing power supply in a power system can influence its operation and potentially compromise the entire system performance in terms of efficiency. To maintain a high reliability, high performance SMPC effective control is necessary for regulating the output of the SMPC system. However, an uncertainty is a key factor in SMPC operation. For example, parameter variations can be caused by environmental effects such as temperature, pressure and humidity. Usually, fixed controllers cannot respond optimally and generate an effective signal to compensate the output error caused by time varying parameter changes. Therefore, the stability is potentially compromised in this case. To resolve this problem, increasing interest has been shown in employing online system identification techniques to estimate the parameter values in real time. Moreover, the control scheme applied after system identification is often called “adaptive control” due to the control signal selfadapting to the parameter variation by receiving the information from the system identification process. In system identification, the Recursive Least Square (RLS) algorithm has been widely used because it is well understood and easy to implement. However, despite the popularity of RLS, the high computational cost and slow convergence speed are the main restrictions for use in SMPC applications. For this reason, this research presents an alternative algorithm to RLS; Fast Affline Projection (FAP). Detailed mathematical analysis proves the superior computational efficiency of this algorithm. Moreover, simulation and experiment result verify this unique adaptive algorithm has improved performance in terms of computational cost and convergence speed compared with the conventional RLS methods. Finally, a novel adaptive control scheme is designed for optimal control of a DC-DC buck converter during transient periods. By applying the proposed adaptive algorithm, the control signal can be successfully employed to change the ON/OFF state of the power transistor in the DC-DC buck converter to improve the dynamic behaviour. Simulation and experiment result show the proposed adaptive control scheme significantly improves the transient response of the buck converter, particularly during an abrupt load change conditio

    Fault tolerant control for nonlinear aircraft based on feedback linearization

    Get PDF
    The thesis concerns the fault tolerant flight control (FTFC) problem for nonlinear aircraft by making use of analytical redundancy. Considering initially fault-free flight, the feedback linearization theory plays an important role to provide a baseline control approach for de-coupling and stabilizing a non-linear statically unstable aircraft system. Then several reconfigurable control strategies are studied to provide further robust control performance:- A neural network (NN)-based adaption mechanism is used to develop reconfigurable FTFC performance through the combination of a concurrent updated learninglaw. - The combined feedback linearization and NN adaptor FTFC system is further improved through the use of a sliding mode control (SMC) strategy to enhance the convergence of the NN learning adaptor. - An approach to simultaneous estimation of both state and fault signals is incorporated within an active FTFC system.The faults acting independently on the three primary actuators of the nonlinear aircraft are compensated in the control system.The theoretical ideas developed in the thesis have been applied to the nonlinear Machan Unmanned Aerial Vehicle (UAV) system. The simulation results obtained from a tracking control system demonstrate the improved fault tolerant performance for all the presented control schemes, validated under various faults and disturbance scenarios.A Boeing 747 nonlinear benchmark model, developed within the framework of the GARTEUR FM-AG 16 project “fault tolerant flight control systems”,is used for the purpose of further simulation study and testing of the FTFC scheme developed by making the combined use of concurrent learning NN and SMC theory. The simulation results under the given fault scenario show a promising reconfiguration performance
    • …
    corecore