650 research outputs found

    Strategic plan, 1985

    Get PDF
    The Lewis Strategic Plan was updated for 1985 and beyond. Major programs for the space station, the advanced turboprop, the Advanced Communications Technology Satellite (ACTS), and the Altitude Wind Tunnel were begun or greatly expanded during 1984. In parallel, The Lewis aeropropulsion research and technology program was extensively evaluated and reviewed; a reduced and reoriented program emerged. The thrusts and implementation plans for these programs are described as they pertain to the individual directorates. Other key accomplishments and plans are summarized

    Safety considerations in testing a fuel-rich aeropropulsion gas generator

    Get PDF
    A catalyst containing reactor is being tested using a fuel-rich mixture of Jet A fuel and hot input air. The reactor product is a gaseous fuel that can be utilized in aeropropulsion gas turbine engines. Because the catalyst material is susceptible to damage from high temperature conditions, fuel-rich operating conditions are attained by introducing the fuel first into an inert gas stream in the reactor and then displacing the inert gas with reaction air. Once a desired fuel-to-air ratio is attained, only limited time is allowed for a catalyst induced reaction to occur; otherwise the inert gas is substituted for the air and the fuel flow is terminated. Because there presently is not a gas turbine combustor in which to burn the reactor product gas, the gas is combusted at the outlet of the test facility flare stack. This technique in operations has worked successfully in over 200 tests

    Trends in aeropropulsion research and their impact on engineering education

    Get PDF
    This presentation is concerned with the trends in aeropropulsion both in the U.S. and abroad and the impact of these trends on the educational process in our universities. In this paper, we shall outline the new directions for research which may be of interest to educators in the aeropropulsion field. Awareness of new emphases, such as emission reductions, noise control, maneuverability, speed, etc., will have a great impact on engineering educators responsible for restructuring courses in propulsion. The information presented herein will also provide some background material for possible consideration in the future development of propulsion courses. In describing aeropropulsion, we are concerned primarily with air-breathing propulsion; however many observations apply equally as well to rocket engine systems. Aeropropulsion research needs are primarily motivated by technologies required for advanced vehicle systems and frequently driven by external requirements such as economic competitiveness, environmental concern and national security. In this presentation, vehicle based research is first described, followed by a discussion of discipline and multidiscipline research necessary to implement the vehicle-focused programs. The importance of collaboration in research and the training of future researchers concludes this presentation

    Heat transfer in aeropropulsion systems

    Get PDF
    Aeropropulsion heat transfer is reviewed. A research methodology based on a growing synergism between computations and experiments is examined. The aeropropulsion heat transfer arena is identified as high Reynolds number forced convection in a highly disturbed environment subject to strong gradients, body forces, abrupt geometry changes and high three dimensionality - all in an unsteady flow field. Numerous examples based on heat transfer to the aircraft gas turbine blade are presented to illustrate the types of heat transfer problems which are generic to aeropropulsion systems. The research focus of the near future in aeropropulsion heat transfer is projected

    Enhancing aeropropulsion research with high-speed interactive computing

    Get PDF
    NASA-Lewis has committed to a long range goal of creating a numerical test cell for aeropropulsion research and development. Efforts are underway to develop a first generation Numerical Propulsion System Simulation (NPSS). The NPSS will provide a unique capability to numerically simulate advanced propulsion systems from nose to tail. Two essential ingredients to the NPSS are: (1) experimentally validated Computational Fluid Dynamics (CFD) codes; and (2) high performing computing systems (hardware and software) that will permit those codes to be used efficiently. To this end, NASA-Lewis is using high speed, interactive computing as a means for achieving Integrated CFD and Experiments (ICE). The development is described of a prototype ICE system for multistage compressor flow physics research

    Determining structural performance

    Get PDF
    An overview of the methods and concepts developed to enhance and predict structural dynamic characteristics of advanced aeropropulsion systems is presented. Aeroelasticity, vibration control, dynamic systems, and computational structural methods are four disciplines that make up the structural dynamic effort at LeRC. The aeroelasticity program develops analytical and experimental methods for minimizing flutter and forced vibration of aerospace propulsion systems. Both frequency domain and time domain methods were developed for applications on the turbofan, turbopump, and advanced turboprop. In order to improve life and performance, the vibration control program conceives, analyzes, develops, and demonstrates new methods for controlling vibrations in aerospace systems. Active and passive vibration control is accomplished with electromagnetic dampers, magnetic bearings, and piezoelectric crystals to control rotor vibrations. The dynamic systems program analyzes and verifies the dynamics of interacting systems, as well as develops concepts and methods for high-temperature dynamic seals. Work in this field involves the analysis and parametric identification of large, nonlinear, damped, stochastic systems. The computational structural methods program exploits modern computer science as an aid to the solutions of structural problems

    NASA research activities in aeropropulsion

    Get PDF
    NASA is responsible for advancing technologies related to air transportation. A sampling of the work at NASA's Lewis Research Center aimed at improved aircraft propulsion systems is described. Particularly stressed are efforts related to reduced noise and fuel consumption of subsonic transports. Generic work in specific disciplines are reviewed including computational analysis, materials, structures, controls, diagnostics, alternative fuels, and high-speed propellers. Prospects for variable cycle engines are also discussed

    Turbomachinery technology for high-speed civil flight

    Get PDF
    NASA Lewis' research and technology efforts applicable to turbomachinery for high-speed flight are discussed. The potential benefits and cycle requirements for advanced variable cycle engines and the supersonic throughflow fan engine for a high-speed civil transport application are presented. The supersonic throughflow fan technology program is discussed. Technology efforts in the basic discipline areas addressing the severe operating conditions associated with high-speed flight turbomachinery are reviewed. Included are examples of work in internal fluid mechanics, high-temperature materials, structural analysis, instrumentation and controls

    Computers in aeronautics and space research at the Lewis Research Center

    Get PDF
    This brochure presents a general discussion of the role of computers in aerospace research at NASA's Lewis Research Center (LeRC). Four particular areas of computer applications are addressed: computer modeling and simulation, computer assisted engineering, data acquisition and analysis, and computer controlled testing

    Challenges in Aeropropulsion

    Get PDF
    Aeropropulsion technologies must progress to satisfy increasingly stringent global environmental requirements with economically viable air transportation systems. In this paper, key propulsion technologies to meet future needs are identified and the associated challenges are briefly discussed. Also discussed are NASA's vision, NASA's changing role in meeting today's challenge of a shrinking research budget, and propulsion technology impacts on the environment and air transport economics. Critical aeropropulsion technology drivers are identified and their impact evaluated. The aviation industry is critical to the nation's economy, job creation, and national security. NASA's advanced aeropropulsion technology programs and their relation to the aviation industry are discussed
    • …
    corecore