18 research outputs found

    Fast indoor scene classification using 3D point clouds

    Full text link
    A representation of space that includes both geometric and semantic information enables a robot to perform high-level tasks in complex environments. Identifying and categorizing environments based on onboard sensors are essential in these scenarios. The Kinectâ„¢, a 3D low cost sensor is appealing in these scenarios as it can provide rich information. The downside is the presence of large amount of information, which could lead to higher computational complexity. In this paper, we propose a methodology to efficiently classify indoor environments into semantic categories using Kinectâ„¢ data. With a fast feature extraction method along with an efficient feature selection algorithm (DEFS) and, support vector machines (SVM) classifier, we could realize a fast scene classification algorithm. Experimental results in an indoor scenario are presented including comparisons with its counterpart of commonly available 2D laser range finder data

    Segmentation and Classification of 3D Urban Point Clouds: Comparison and Combination of Two Approaches

    Get PDF
    International audienceSegmentation and classification of 3D urban point clouds is a complex task, making it very difficult for any single method to overcome all the diverse challenges offered. This sometimes requires the combination of several techniques to obtain the desired results for different applications. This work presents and compares two different approaches for segmenting and classifying 3D urban point clouds. In the first approach, detection, segmentation and classification of urban objects from 3D point clouds, converted into elevation images, are performed by using mathematical morphology. First, the ground is segmented and objects are detected as discontinuities on the ground. Then, connected objects are segmented using a watershed approach. Finally, objects are classified using SVM (Support Vector Machine) with geometrical and contextual features. The second method employs a super-voxel based approach in which the 3D urban point cloud is first segmented into voxels and then converted into super-voxels. These are then clustered together using an efficient link-chain method to form objects. These segmented objects are then classified using local descriptors and geometrical features into basic object classes. Evaluated on a common dataset (real data), both these methods are thoroughly compared on three different levels: detection, segmentation and classification. After analyses, simple strategies are also presented to combine the two methods, exploiting their complementary strengths and weaknesses, to improve the overall segmentation and classification results

    A MIN-CUT BASED FILTER FOR AIRBORNE LIDAR DATA

    Get PDF

    Density-Aware Convolutional Networks with Context Encoding for Airborne LiDAR Point Cloud Classification

    Full text link
    To better address challenging issues of the irregularity and inhomogeneity inherently present in 3D point clouds, researchers have been shifting their focus from the design of hand-craft point feature towards the learning of 3D point signatures using deep neural networks for 3D point cloud classification. Recent proposed deep learning based point cloud classification methods either apply 2D CNN on projected feature images or apply 1D convolutional layers directly on raw point sets. These methods cannot adequately recognize fine-grained local structures caused by the uneven density distribution of the point cloud data. In this paper, to address this challenging issue, we introduced a density-aware convolution module which uses the point-wise density to re-weight the learnable weights of convolution kernels. The proposed convolution module is able to fully approximate the 3D continuous convolution on unevenly distributed 3D point sets. Based on this convolution module, we further developed a multi-scale fully convolutional neural network with downsampling and upsampling blocks to enable hierarchical point feature learning. In addition, to regularize the global semantic context, we implemented a context encoding module to predict a global context encoding and formulated a context encoding regularizer to enforce the predicted context encoding to be aligned with the ground truth one. The overall network can be trained in an end-to-end fashion with the raw 3D coordinates as well as the height above ground as inputs. Experiments on the International Society for Photogrammetry and Remote Sensing (ISPRS) 3D labeling benchmark demonstrated the superiority of the proposed method for point cloud classification. Our model achieved a new state-of-the-art performance with an average F1 score of 71.2% and improved the performance by a large margin on several categories

    Comparing Machine and Deep Learning Methods for Large 3D Heritage Semantic Segmentation

    Get PDF
    In recent years semantic segmentation of 3D point clouds has been an argument that involves different fields of application. Cultural heritage scenarios have become the subject of this study mainly thanks to the development of photogrammetry and laser scanning techniques. Classification algorithms based on machine and deep learning methods allow to process huge amounts of data as 3D point clouds. In this context, the aim of this paper is to make a comparison between machine and deep learning methods for large 3D cultural heritage classification. Then, considering the best performances of both techniques, it proposes an architecture named DGCNN-Mod+3Dfeat that combines the positive aspects and advantages of these two methodologies for semantic segmentation of cultural heritage point clouds. To demonstrate the validity of our idea, several experiments from the ArCH benchmark are reported and commented

    A CURVATURE BASED ADAPTIVE NEIGHBORHOOD FOR INDIVIDUAL POINT CLOUD CLASSIFICATION

    Get PDF

    Feature relevance assessment for the semantic interpretation of 3D point cloud data

    Get PDF
    The automatic analysis of large 3D point clouds represents a crucial task in photogrammetry, remote sensing and computer vision. In this paper, we propose a new methodology for the semantic interpretation of such point clouds which involves feature relevance assessment in order to reduce both processing time and memory consumption. Given a standard benchmark dataset with 1.3 million 3D points, we first extract a set of 21 geometric 3D and 2D features. Subsequently, we apply a classifier-independent ranking procedure which involves a general relevance metric in order to derive compact and robust subsets of versatile features which are generally applicable for a large variety of subsequent tasks. This metric is based on 7 different feature selection strategies and thus addresses different intrinsic properties of the given data. For the example of semantically interpreting 3D point cloud data, we demonstrate the great potential of smaller subsets consisting of only the most relevant features with 4 different state-of-the-art classifiers. The results reveal that, instead of including as many features as possible in order to compensate for lack of knowledge, a crucial task such as scene interpretation can be carried out with only few versatile features and even improved accuracy
    corecore