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Abstract: In recent years semantic segmentation of 3D point clouds has been an argument that involves
different fields of application. Cultural heritage scenarios have become the subject of this study mainly
thanks to the development of photogrammetry and laser scanning techniques. Classification algorithms
based on machine and deep learning methods allow to process huge amounts of data as 3D point clouds.
In this context, the aim of this paper is to make a comparison between machine and deep learning
methods for large 3D cultural heritage classification. Then, considering the best performances of both
techniques, it proposes an architecture named DGCNN-Mod+3Dfeat that combines the positive aspects
and advantages of these two methodologies for semantic segmentation of cultural heritage point clouds.
To demonstrate the validity of our idea, several experiments from the ArCH benchmark are reported
and commented.

Keywords: classification; semantic segmentation; digital cultural heritage; point clouds; machine
learning; deep learning

1. Introduction

Semantic segmentation is one of the most important research methods for computer vision, and
has the task to classify each pixel or point in the scene into classes that have specific features [1,2].
In the past, semantic segmentation concerned bi-dimensional images but, due to some limitations
related to occlusions, illumination, posture and other problems, the researches began to deal with
three-dimensional data. This change also occurred thanks to the growing diffusion of photogrammetry
and laser scanning surveys. In the 3D form of semantic segmentation, regular or irregular points are
processed in the 3D space [3].

Surely, the automatic interpretation of 3D point clouds by semantic segmentation in the cultural
heritage (CH) context represents a very challenging task. Digital documentation is not easy to obtain,
but it is necessary to disseminate cultural heritage [4]. Shapes are complex and the objects, even
if repeatable, are unique, handcrafted and not serialised. Notwithstanding, the understanding of
3D scenes in digital CH is crucial, as it can have many applications such as the identification of
similar architectural elements in large dataset, the analysis of the state of conservation of materials,
the subdivision of the point clouds in its structural parts preliminary for scan-to-BIM processes, etc. [5].
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In recent years, the researches for semantic segmentation of point clouds in CH have made a
significant breakthrough thanks to the application of artificial intelligence (AI) methods [6,7]. In the
literature, most of the machine learning (ML) and deep learning (DL) approaches employ supervised
learning methods. According to [8] in the era of big-data, ML classification approaches are evolving
in DL approaches since they are more efficient to deal with a large quantity of data derived from
modern methods and with the complexity of 3D point clouds, by continuously teaching and adjusting
their abilities [9–11]. However, as their success relies on the availability of large amounts of annotated
dataset, the complete replacement of ML approaches within the heritage field is still not possible.
A major drawback of DL methods is that they are not easily interpretable, since these models behave
as black-boxes and fail to provide explanations on their predictions.

In this context, the aim of this research is to report a comparison between two different classification
approaches for CH scenarios, based on machine and deep learning techniques. Among them, four
state-of-the-art ML and DL algorithms are tested, highlighting the possibility to combine the positive
aspects of each methodology into a new architecture (later called DGCNN-Mod+3Dfeat) for the semantic
segmentation of CH 3D architectures.

Among ML methods, we used K-Nearest Neighbours (kNN) [12], Naive Bayes (NB) [13],
Decision Trees (DT) [14] and Random Forest (RF) [15]. They have been trained with geometric
features and small annotated patches, ad-hoc selected over the different case studies.

Regarding the DL approaches, four different versions of DGCNN [16] are used, trained on several
scenes of the newly proposed heritage ArCH benchmark [17], composed of various annotated CH
point clouds. Two out of the four DGCNN architectures proposed (DGCNN and DGCNN-Mod)
have already been tested by the authors in a previous paper [18] where, from a comparison with
other state-of-art NNs (PointNet, PointNet++, PCNN, DGCNN) the DGCNN proved to be the best
architecture for our data. Therefore, in this paper, the previously presented results are compared with
those achieved introducing new features to the networks.

The evaluation of the selected ML and DL methods is performed on three different heritage scenes
belonging to the above cited ArCH dataset.

Research Questions and Paper Structure

In the context of CH-related point cloud classification and semantic segmentation methods,
four research questions are addressed by this study:

RQ1 Is it possible to provide the research community with guidelines for the automatic segmentation
of point clouds in the CH domain?

RQ2 Which ML and DL algorithms perform better for the semantic segmentation of heritage 3D
point cloud?

RQ3 Is there a winning solution between ML and DL in the CH domain?
RQ4 Is it correct comparing the performance results of ML and DL algorithms with the same pipeline?

The paper is organised as follows. Section 2 provides a description of the approaches that were
adopted for point clouds semantic segmentation. Section 3 describes the used dataset and methodology.
Section 4 offers an extensive comparative evaluation and analysis of ML and DL approaches. A detailed
discussion of the results is presented in Section 5. Finally, Section 6 draws conclusions and discusses
future directions for this field of research.

Additional experiments have been finally run with the DL methods on the whole ArCH dataset
(that includes four new CH labelled scenes, if compared with the 12 used for the previous tests
presented in [18]), in order to check if the largest size of the training dataset would effectively improve
the performances (see Appendix A, Tables A4 and A5 for detailed metrics). The results shown in the
paper do not include these four new scenes because it would have compromised a fair comparison
with the DGCNN-Mod presented in [18], therefore the same number of scenes has been kept.
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2. Related Works

In the literature, there is a restricted number of applications that use machine learning methods to
classify 3D point clouds in different objects belonging to cultural heritage scenes, even if, according to [6],
these methods had great progress to this regard. Indeed, in their study the authors explore the applicability
of supervised machine learning approaches to cultural heritage by providing a standardised pipeline for
several case studies.

In this domain, the research of [19] has two main objectives: providing a framework that extracts
geometric primitives from a masonry image, and extracting and selecting statistical features for the
automatic clustering of masonry. The authors combine existing image processing and machine learning
tools for the image-based classification of masonry walls and then make a performances comparison
among five different machine learning algorithms for the classification task. The main issue of this
method is that each block of the wall is not individually characterised.

The research presented in [20] wants to overcome this limitation, presenting a novel automatic
segmentation algorithm of masonry blocks from a 3D point cloud acquired with LiDAR technology.
The image processing algorithm is based on an optimisation of the watershed algorithm, also used to
improve segmentation algorithms in other works [21,22], to automatically segment 3D point clouds in
3D space isolating each single stone block.

In their research, Grilli et al. [23] propose a strategy to classify heritage 3D models by applying
supervised machine learning classification algorithms to their UV maps. To verify the reliability of the
method, the authors evaluate different classifiers over three heterogeneous case studies.

In [24] the authors explore the relation between covariance features and architectural elements
using supervised machine learning classifier (Random Forest), finding in particular a correlation
between the feature search radii and the size of the element. A more in-depth analysis of the previous
approach [25] demonstrates the capability of the algorithm to generalise across different unseen
architectural scenarios. The research conducted by Murtiyoso et al. [26] aims to help the manual
point clouds labeling of large training data set required from machine learning algorithms. Moreover,
the authors introduce a series of functions that allow the automatic processing for some issues of
segmentation and classification of CH point clouds. Due to the complexity of the problem, the project
considers only some important classes. The toolbox uses a multi-scale approach: the point clouds are
processed from the historical complex to architectural elements, making it suitable for different types
of heritage.

Mainly in recent years, deep learning has received increasing attention from the researches and has
been successfully applied to semantically segment 3D point clouds in different domains [3,27]. In the
context of cultural heritage there are still few studies that use deep learning approaches to classify 3D
point clouds. The need to have a large scale well-annotated dataset can limit its development, blocking
the research in this direction. In some cases this problem can be solved using synthetic dataset [8,28].
However, the researches conducted so far have yielded encouraging results.

Deep learning approaches are properly used for directly managing the raw data of point clouds
without considering an intermediate processing that allows a more regular representation. For this
purpose the first approach is proposed in [29]. An extended version of the previous network considers
not only each point separately, but also its neighbors, in order to exploit the local features and thus
obtain more efficient classification results [30].

Malinverni et al. [7] use PointNet++ to semantically segment 3D point clouds of CH dataset.
The aim of the paper is to demonstrate the efficiency of chosen deep learning approaches to process
point clouds of CH domain. Moreover, the method is evaluated on a suitably created CH dataset
manually annotated by domain experts.

An alternative to these approaches is based on the point clouds Convolutional Neural Network
(PCNN) [31], a novel architecture that uses two operators (extension and restriction). The extension
maps functions defined over the point cloud to volumetric functions, while the restriction operator
does the inverse.



ISPRS Int. J. Geo-Inf. 2020, 9, 535 4 of 22

An approach inspired by PointNet is proposed by [16] where the difference is to exploit local
geometric structures using a neural network module, EdgeConv, that constructs a local neighborhood
graph and applies convolution-like operations. Moreover the model, named DGCNN (Dynamic
Graph Convolutional Neural Network), dynamically updates the graph, changing the set of k-nearest
neighbors of a point from layer to layer of the network.

In the CH context, inspired by this architecture, Pierdicca et al. [18] propose to semantically
segment 3D point clouds using an augmented DGCNN by adding features such as normals and the
radiometric component. This modified version has the aim to simplify the management of DCH assets
that have complex geometries, extremely variable and defined with a high level of detail. The authors
also propose a novel publicly available dataset to validate the novel architecture making a comparison
between other DL methods.

Another study that uses DL to classify objects of CH is presented in [5]. The authors make a
performances comparison between machine and deep learning methods in the classification task of two
different heritage datasets. Using machine learning approaches (Random Forest and One-versus-One)
the performances are excellent in almost all the identified classes, but there is no correlation between
the characteristics. Using DL approaches (1D CNN, 2D CNN and RNN Bi-LSTM) the 3D point clouds
are considered as a sequence of points. However ML approaches overcome DL, because according to
the authors the DL methods implemented are not very recent, and so other architecture will be tested.

3. Materials and Methods

In this section the workflow of the comparison between the two methodologies is presented,
as well as the classifiers and scenes used for the three experiments (Figure 1).

Figure 1. Workflow for the machine learning (ML) and deep learning (DL) framework comparison.

As previously mentioned, the goal of this paper is not to compare algorithms, but rather
classification approaches. In fact, for a fair comparison between classification algorithms, it would
be necessary to use the same training data. In this context, some initial experiments using the same
number of scenes in the training phases for both DL and ML algorithms have been performed.
However, the ML classifiers did not achieve satisfactory results compared with those obtained using
reduced annotated portions of the test scenes. Therefore, as the aim of the paper is discussing the best
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approaches for heritage classification, a comparison between ML and DL approaches is presented,
where the training data are different.

Three different experiments have been performed as follows. In the first experiment both the
different ML and DL classifiers have been trained on the same portion of a symmetrical scene: half of
the point cloud is used for training and validation, and half for the final test. In the second and third
experiment the samples used to train the ML and DL classifiers are different. On one hand, for the ML
approach, a reduced portion of the test scene is annotated and used during the training phase, leaving
the remaining part for the prediction phase. On the other, for the DL approach, different annotated
scenes are used for the training phase, while for the testing totally new data are presented to the
networks. Further details are given in the following subsections.

3.1. Benchmark for Point Cloud Semantic Segmentation

The scenes used for the following tests are part of the ArCH benchmark [17], a group of
architectural point clouds collected by several universities and research bodies with the aim
of sharing and labelling an adequate number of point clouds for training and testing artificial
intelligence methods.

This benchmark represents the current state of the art in the field of annotated cultural
heritage point clouds, with 15 point clouds of architectural scenarios for training and two for test.
Although other benchmarks and datasets for point clouds’ classification and semantic segmentation
already exist [32–35], the ArCH dataset is the only one specifically focused on the CH domain and
with a higher level of detail, therefore it has been chosen for the tests here presented.

For our experiments, three test scenes are used (Table 1): (i) the symmetrical point cloud of the
Trompone Church, (ii) the Palace of Pilato of the Sacred Mount of Varallo—SMV (a two-floor building,
not symmetrical and not linear), and (iii) the portico of the Sacred Mount of Ghiffa—SMG (a simpler
and quite linear scene). For the DL approach, the symmetrical point cloud is used for an initial
evaluation of the hyperparameters. Whilst the other two scenes allow to evaluate the generalisation
ability of state-of-art neural networks by testing them on different cases: a complex one, SMV, and a
simpler one, SMG.

Table 1. Experiments performed with relative test and training sets.

Experiment Test Set Training Set

ML DL

1
Overall Results in Table 2 and Figure 4

Detailed Results in Table A1

Trompone Church
- symmetrical half part - Remaining half part

Remaining half part
(Training and Validation) /

2
Overall Results in Table 3 and Figure 6

Detailed Results in Table A2

SMV scene
(Sacred Mount of Varallo) 16% of the test scene

10 scenes for Training
and 1 for Validation

14 scenes for Training
and 1 for Validation

(whole ArCH dataset)
Results in Table A4

3
Overall Results in Table 4 and Figure 8

Detailed Results in Table A3

SMG scene
(Sacred Mount of Ghiffa) 20% of the test scene

10 scenes for Training
and 1 for Validation

14 scenes for Training
and 1 for Validation

(whole ArCH dataset)
Results in Table A5

3.2. Machine Learning Classifiers for Point Cloud Semantic Segmentation

Over the past ten years, different Machine Learning approaches have been proposed in the literature
for point cloud semantic segmentation such as k-Nearest Neighbour (kNN) [36], Support Vector Machine
(SVM) [37,38], Decision Tree (DT) [39,40], AdaBoost (AB) [41,42], Naive Bayes (NB) [43,44], and Random
Forest (RF) [45]. Among them, in this paper, kNN, NB, DT, and RF classifiers have been implemented
in Python 3, starting from the available Scikit-learn Python library [46], in order to solve multi-class
classification tasks. For each case study the four classifiers have been trained through selected features
and small manually annotated portions of the datasets.
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With regard to the kNN classifier, the k value being highly data-dependent, a few preliminary test
with increasing values have been run, in order to find the best fit solution. Best results were achieved
with low values of k (k = 5).

The NB classifier used is the GaussianNB [47], a variant of Naive Bayes that follows Gaussian
normal distribution and supports continuous data.

For the DT, different maximum depths of the tree have been tested. Results confirmed that the
default parameter max-depth=None, by which nodes are expanded until all leaves are pure, allows for
higher accuracy results.

Within the RF classifier two parameters have been initially tuned considering the best F1-score
computed on the evaluation set: the number of decision trees to be generated Ntree and the maximum
depth of the tree Mtry [45]. The reported results refers to the use of 100 trees with max-depth=None.

Features Selection

In order to effectively train the different ML classifiers a composition of 3D geometric features have
been used, including normal-based (Verticality), height-based (Z coordinates), and eigenvalue-based
features (also defined covariance features).

The covariance features [48] are shape descriptors obtained as a combination of eigenvalues
(λ1 > λ2 > λ3) which are extracted from the covariance matrix, a 3D tensors that describe the
distribution of point within a certain neighbourhood. Through statistical analysis, the Principal
Component Analysis (PCA), it is possible to extract from this matrix the three eigenvalues representing
the local 3D structure. According to Weinmann et al. [49], different strategies can be applied to recover
the local neighbourhood for points belonging to a 3D point cloud. It can generally be computed as
a sphere or a cylinder with a fixed radius or be described by the number of the kNN. In this paper,
considering the studies presented in [24,25], only a few covariance features (Omnivariance, Surface
Variation and Planarity) have been calculated on spherical neighbourhoods at specific radii in order to
highlight the architectural components.

As one can see in Figure 2, different features emphasises different elements. Verticality makes easier
the distinction between vertical and horizontal surfaces, allowing the recognition of walls and columns
as well as floors, stairs and vaults. The feature planarity becomes useful for isolating columns and
cylindrical elements if extracted at radii close to the diameter dimensions. Finally, surface variation and
omnivariance, calculated within a short radius, emphasises changes in shapes facilitating, for example,
the detection of moldings and windows.

3.3. Deep Learning for Point Cloud Semantic Segmentation

In this paper, the approach presented in [18] is adopted, where a modified version of DGCNN is
proposed, called DGCNN-Mod. This implementation includes several improvements, compared to the
original version: in the input layer, kNN phase considers coordinates of normalised points, color features
transformations like HSV, and normal vectors. Moreover, the performance of the DGCNN-Mod is
compared with two novel versions of this network: the DGCNN-3Dfeat and the DGCNN-Mod+3Dfeat
that take into consideration other important features aforementioned. In particular, the DGCNN-3Dfeat
adds to the kNN the 3D features. Instead, for a complete ablation study the DGCNN-Mod+3Dfeat
comprises all the available features. Figure 3 represents the configurations of the EdgeConv layer with
the various feature combinations.
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Figure 2. Three-dimensional features used to train the ML and DL classifiers. The colour of the plot
represents the feature scale. The used search radii are reported in brackets.



ISPRS Int. J. Geo-Inf. 2020, 9, 535 8 of 22

(a) DGCNN-Mod (b) DGCNN-3Dfeat

(c) DGCNN-Mod+3Dfeat

Figure 3. Modified EdgeConv layer for DGCNN-based approaches.

Compared to the DGCNN-Mod, two types of pre-processing techniques are tested: Scaler1
and Scaler2. The Scaler1 standardises features by removing the mean and scaling to unit variance.
The standard score of a sample x is determined as:

z =
x − µ

σ
(1)

where µ is the mean of the training samples and σ is the standard deviation of the training samples.
Instead, Scaler2 scales features using statistics that are robust to outliers. This pre-processing phase
removes the median and scales the data according to the quantile range (IQR: InterQuartile Range).
The IQR is the range between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile).
Centering and scaling happen independently on each feature by computing the relevant statistics
on the samples in the training set. Median and interquartile range are then stored to be used on the
validation and test set. In addition, the original DGCNN network uses the Cross Entropy Loss. Since we
are using really unbalanced datasets, we decide to test Focal Loss [50] as well. This particular function
has been implemented just to solve unbalance issues.

All deep learning approaches have been implemented using Python 3 and the well-known
framework called Tensorflow. Pre-processing techniques on features, i.e., Scaler1 and Scaler2, have been
implemented through the Scikit-Learn library [46], also implemented in Python.

3.4. Performance Evaluation Metrics

In the experimental section (Section 4), the employed state-of-the-art approaches are compared
using the most common performance metrics for semantic segmentation. The Overall Accuracy
(OA), along with weighted Precision, Recall and F1-Score are calculated regarding the test set, as
these are very good performance indicators to understand if the approaches are able to generalise
in a proper way. Please consider that OA and Recall have the same values, since the metrics are
weighted. In addition, a comparison is also made between the individual classes of the test set, for
each experiment performed: Precision, Recall, F1-Score and Intersection over Union (IoU) values are
calculated for each type of object (see the Appendix A).

It is worth noting that, in the scenes to be classified, the number of points varies according to the
two approaches involved. In fact, with ML the total number of points both in the input and output
scene are used, while with DL the unseen point cloud is subsampled with respect to the original one,
for computational reasons. The number of subsampled points could be arbitrarily set, the most used
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is 4096 for each analysed block, but higher values can be chosen (e.g., 8192) at training time expense.
In this paper 4096 points per block have been set as subsampling parameter.

4. Results

In this section, several experiments performed with the previously presented ML and DL methods
are reported. The experiment proposed in Section 4.1 regards the segmentation of the Trompone
symmetrical scene, starting from the partial annotation of the same scene. In the second and third
experiments, the training samples change according to the adopted classification strategy (ML or DL).
Still, the same scenes are tested: SMV scene for Section 4.2 and SMG scene for Section 4.3.

4.1. First Experiment—Segmentation of a Partially Annotated Scene

In this setting, the Trompone scene is initially split into two parts, choosing one side for the
training and the symmetrical one for the test. Then, the side used for the training phase is further split
into training set (80%) and validation set (20%). The validation set is used to test the OA at the end of
each training epoch while the evaluation is performed on the test set. For this test, nine architectural
classes have been considered. Unlike the next experiments (Sections 4.2 and 4.3), the class “Other” was
used during the training as it could be uniquely identified with the furnishing of the church (mainly
benches and confessionals). No points from the class "roof" were tested, this being an indoor scene.

Original DGCNN uses its standard hyper-parameters: normalised XYZ coordinates for the kNN
phase and XYZ + RGB for the feature learning phase, with 1 × 1 m block size. This latter parameter
defines only the size of the block base, since the height is considered “endless”; in this way the whole
scene can be analysed and the lowest number of blocks is defined. For the other DGCNN-based
approaches we used the Scaler1 pre-processing setting for the features, as it resulted to be the best
configuration among all the various tests performed. In addition, for the DGCNN-Mod+3Dfeat
network, the best result was achieved using Focal Loss function.

In Table 2, the performances of the state-of-the-art approaches are reported. As we can see, the best
returns in terms of accuracy metrics come from the RF approach. In addition, the other approaches
exceeding 0.80 of accuracy are DT, DGCNN-3Dfeat, and DGCNN-Mod+3Dfeat, which all have in
common the use of the 3D features. We can, therefore, deduce that this type of features allows for an
improvement of the original DGCNN performances as they are very representative for the classes
under investigation.

Table 2. Weighted metrics computed for the Test set of the Trompone scene divided into 3 parts:
Training, Validation, Test.

Model Overall Accuracy Precision Recall F1-Score

kNN 0.7438 0.7337 0.7438 0.7345
NB 0.6639 0.6406 0.6639 0.6364
DT 0.8345 0.8313 0.8345 0.8312
RF 0.8804 0.8796 0.8804 0.8754

DGCNN 0.7117 0.7400 0.7117 0.7040
DGCNN-Mod 0.7313 0.7344 0.7313 0.6963

DGCNN-3Dfeat 0.8723 0.8705 0.8723 0.8676
DGCNN-Mod+3Dfeat 0.8290 0.8271 0.8290 0.8215

Table A1 (see Appendix A) reports the accuracy metrics (Precision, Recall, F1-Score and IoU) for
each class of the Trompone’s test set. From the analysis of this table it is possible to understand which
are the classes that are best discriminated by the various approaches. Finally, Figure 4 depicts the
manually annotated test scene (ground truth) and the automatic segmentation results, obtained with
best approaches. From this visual result we can notice again the issues with the class Stair (in green),
and Window-Door (in yellow) (e.g., in none of the approaches it has been possible to identify the door
at the center of the scene).
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(a) Ground Truth (b) RF Prediction with OA 0.8804.

(c) DGCNN-Mod Prediction with OA 0.7313. (d) DGCNN-3Dfeat Prediction with OA 0.8723.

Figure 4. Ground Truth and predicted point clouds, by using best approaches on Trompone’s Test side.

4.2. Second Experiment—Segmentation of an Unseen Scene, the Sacro Monte Varallo (SMV)

In the second and third experiments, as previously anticipated, the training samples change
according to the classification strategy adopted (ML or DL). Moreover, based on the experience of [30],
the class “Other” is excluded from the classification, as the objects included are too variegated and
it would confuse the NN. The portion of scene used to train the different ML classifiers consists of
2 526 393 points out of 16 200 442 points (approx. 16%) (Figure 5), while for the NNs 12 scenes of ArCH
dataset have been used according to the previous tests performed in [18].

Same state-of-the-art approaches as in the previous section are evaluated.

Figure 5. Manual annotations used to train the ML algortihms for the Sacro Monte Varallo (SMV) Scene.

In Table 3, the overall performances are reported for each tested model, while Table A2
(see Appendix A) reports detailed results on the individual classes of the test scene. Original DGCNN
is trained again using its standard hyperparameters. For the other DGCNN-based approaches we
achieved the best results using:

• Focal Loss for DGCNN-Mod;
• Scaler1 pre-processing for DGCNN-3Dfeat;
• Focal loss and Scaler2 pre-processing for DGCNN-Mod+3Dfeat;
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Table 3. Weighted metrics computed for the Test set of the SMV scene.

Model Overall Accuracy Precision Recall F1-Score

kNN 0.8102 0.8588 0.8102 0.8248
NB 0.7331 0.7970 0.7331 0.7584
DT 0.8041 0.8522 0.8041 0.8180
RF 0.8369 0.8736 0.8369 0.8467

DGCNN 0.5608 0.6850 0.5608 0.5602
DGCNN-Mod 0.8294 0.8216 0.8295 0.8192

DGCNN-3Dfeat 0.7890 0.7776 0.7890 0.7720
DGCNN-Mod+3Dfeat 0.8452 0.8287 0.8452 0.8343

Table 3 shows that DGCNN-Mod+3Dfeat is the best approach in terms of OA, reaching 0.8452
on the Test Scene, followed by the RF with 0.8369. However, studying the results of the individual
classes through Table A2, we can see that with the DL approach, two classes have not been well
recognised (i.e., Arch and Column). The second best approach, on the contrary, gets better results on
these classes, while maintaining an high average accuracy. Figure 6 depicts the manually annotated
test scene (ground truth) and the automatic segmentation results obtained with the best approaches.
It is possible to notice that most of the classes have been well recognised, except for the Arch class in
the DGCNN-based approaches and the Door-Window class for the RF.

(a) Ground Truth (b) RF Prediction with OA 0.8369.

(c) DGCNN-Mod Prediction with OA 0.8294. (d) DGCNN-Mod+3Dfeat Prediction with OA 0.8452.

Figure 6. Section of Ground Truth (a) and the best Predictions (b–d) of the SMV scene. Please note that
the point clouds deriving from the DL approach are subsampled.

4.3. Third Experiment—Segmentation of an unseen scene, the Sacro Monte Ghiffa (SMG)

As in the previous experiments, for the ML approaches ad hoc annotations have been distributed
along the point cloud (Figure 7), consisting of 3,545,900 points over a total of 17,798,049 points
(approx. 20%).
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Figure 7. Manual annotations used to train the ML algortihms for the Sacred Mount of Ghiffa
(SMG) Scene.

In Table 4, the overall performances are reported for each tested model, while Table A3
(see Appendix A) reports detailed results on the individual classes of the test scene. Best results have been
achieved with RF, immediately followed by the DGCNN-Mod+3Dfeat network. However, in this case,
given the higher symmetry of the point cloud, if compared to the SMV scene, the increase in OA when
using the 3D features is lower, but still significant. Results are consistent with the previous test and the
most problematic class is again the Door-Window, probably due to the dataset unbalance.

Table 4. Weighted metrics computed for the Test set of the SMG scene.

Model Overall Accuracy Precision Recall F1-Score

kNN 0.6078 0.6565 0.6078 0.6262
NB 0.7186 0.7967 0.7186 0.7422
DT 0.8952 0.9014 0.8952 0.8971
RF 0.9266 0.9239 0.9266 0.9243

DGCNN 0.8514 0.8528 0.8514 0.8474
DGCNN-Mod 0.8951 0.8887 0.8951 0.8860

DGCNN-3Dfeat 0.8736 0.8887 0.8737 0.8776
DGCNN-Mod+3Dfeat 0.9135 0.9165 0.9135 0.9125

Finally, Figure 8 depicts the manually annotated test scene (ground truth) and the automatic
segmentation results obtained with best approaches.

4.4. Results Analysis

The recap of the best OA achieved (Figure 9) highlights that the Random Forest method is slightly
better in the two almost symmetrical scenes of Ghiffa and the Trompone church. In these cases, with
manual annotation, it is possible to select a number of adequately representative examples of the test
scene, ensuring an accurate result. The DL solutions, on the other hand, seem to work better in the
non-symmetric scene, thus showing a good generalisation ability. More generally, the results of DL are
satisfactory, as they demonstrate the achievement of OA similar to those of RF, although the training
set is partially limited, if compared to the others present in the state of the art.

Figure 10 shows the F1-Score, a combination of precision and recall, relative to the single classes.
In this case, the ML approaches outperform DL for some classes such as Arch, Column, Molding and
Floor, while the DL gives better results in the segmentation of Door-Window and Roof. The remaining
classes of Vault, Wall and Stair are equally balanced between the results of the two techniques, with
vaults and walls leaning towards the RF and stairs to the DGCNN-Mod+3Dfeat.
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(a) Ground Truth

(b) RF prediction with OA 0.9266.

(c) DGCNN-Mod prediction with OA 0.8951.

(d) DGCNN-Mod+3Dfeat prediction with OA 0.9135.

Figure 8. Ground Truth (a) and the best Predictions (b–d) of the SMG scene. Please note that the point
clouds deriving from the DL approach are subsampled.
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Figure 9. Overall Accuracy of all tests carried out.

Figure 10. F1-Score of the different classes for the SMV scene with the different approaches.

5. Discussions

Answering to the first research question (RQ1), it can be said that nowadays it is possible to
provide best practices for semantic segmentation of point clouds in the CH domain. In fact, the tests
conducted and the results described above show that the introduction of 3D features has led to an
increase in OA, if compared to the simple use of radiometric components and normals. This increase is
about 10% in the tests on the symmetric scene (Trompone church), while it is lower (approximately
2%) in the tests run with different scenes as training and SMV or SMG as tests. In the latter case,
however, the introduction of the 3D features, associated with the use of the normals and the RGB
features, has improved the recognition of the classes with fewer points and which, previously, resulted
with lower metrics (for example Column, Door-Window and Stair). As it is possible to notice in
Tables A1–A3, for all the approaches, the worst recognised classes are Arch, Door-Window and,
alternatively, Molding or Stair. This result is likely due to the fact that these are the classes with the
lowest number of points within the scenes.

A similar conclusion can be made for the introduction of the focal loss, which, with the
same hyperparameters configuration, has led to an increase of the performance for the Molding,
Door-Window, and Stair classes.

With regard to RQ2, experiment results show that RF outperformed the other ML classifiers. At the
same time, the best DL results have been achieved with the combination of all the selected features,
without leading to an increase in computational time. Previous tests, not presented here, highlighted
that what actually affects this latter aspect is the block size and the number of subsampled points.

Talking about RQ3, as described in the results section, the authors think that there is still no
winning solution between the ML and DL approaches. The OA of the best ML method and the DL one
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differs slightly. However, contrasting results are highlighted if the classes are analysed individually,
where approaches could be chosen according to the needs. Both techniques have strengths and
weaknesses. In the case of ML, there is a customisation of the training set according to the scene to be
predicted, very useful in the CH domain, while for the DL there is the possibility of cutting out the
manual annotation, further automating the process. Another element to take into consideration when
comparing machine and deep learning approaches is the processing time. If the ML pipeline is well
defined, within the DL framework, it is necessary to make a distinction between two possible scenarios
which considerably differ in times. In the first scenario, when an annotated training set is not available,
it is necessary to manually label as many scenes as possible (a very time-consuming task), pre-process
the data (e.g., subsampling, normals computation, centering on the 0,0,0 point, block creation, etc.),
then wait for the training phase from a few hours to a few days. In the second scenario, it is possible to
start from saved weights of a network which had been pre-trained on a released benchmark (ArCH
in this case), and directly proceed to the preparation and test of the new scene, without any manual
annotation phase. So, depending on whether one compares the RF with the first or second scenario,
the balance needle can tip in favor of one or the other technique. In Figure 11, a comparison between
the times required for the tests carried out in this paper is shown. It must be considered that ML tests
were run on an Nvidia GTX 1050 TI 8 GB, 32 GB RAM, processor Intel(R) Xeon(R) CPU E5-1650 0
@ 3.20 GHz, while for the DL an Nvidia RTX 2080 TI 11 GB, 128 GB RAM, processor Intel(R) Xeon(R)
Silver 4214 CPU @ 2.20 GHz was used.

Figure 11. Normalised comparison of times required for the different scenarios test. NN (t0) represents
the first scenario in which the whole dataset has been manually labeled and the DGCNN-based
methods have been trained on all the scenes. NN (t1), on the other hand, represents the next scenario
in which it is possible to use the weights from the pre-trained neural network and conduct directly
the data preparation (feature extraction, scaling, blocks creation, subsampling...) and the final test for
the prediction.

Finally, regarding RQ4, it is fair to state that the main drawback in the comparison between
different algorithms is the limited similarity of their pipeline. In fact, a proper comparison between
algorithms would necessarily require the same input and/or output. As regards the input, considering
the different nature of the algorithms, this would mean giving to the ML classifiers a huge amount of
annotated data which would compromise its performances, or viceversa training the neural network
with a few data compared to that required. For this reason, in order to analyse the best classification
approaches for heritage scenarios, we preferred to use different training scenes for the ML and DL
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input. Concerning the output, for the DL approach an interpolation with the initial scene should
be conducted for a comparison with the same number of points, leading to a likely OA decrease.
However, as the subsampling operation is mainly due to computational reasons, easily solved in the
near future with more and more performing machines, the usefulness of the interpolation would
certainly be reduced and become even pointless. Moreover, using different interpolation algorithms
would introduce a further element of error making the pipeline less objective and reproducible.

6. Conclusions and Future Works

This study explored semantic segmentation of complex 3D point clouds in the CH domain.
To do so, ML techniques and DL techniques have been compared exploiting a novel and previously
unexplored benchmark dataset.

Both ML and DL algorithms proved to be valuable, having great potential for classifying datasets
collected with different Geomatics techniques (e.g., LiDAR and photogrammetric data). When comparing
the performances of both approaches, it appears that there is not a winning solution, classifiers had similar
overall performances, and none of them outperformed each other. Even considering the single classes
studied for the experiments, it emerges that the different approaches are alternatively better depending on
the class analysed, but none of the methods attained a result able to generally outperform all the classes.

In general terms, the training time of classical ML techniques can be up to one order of magnitude
smaller; conversely, a small but noteworthy improvement in performance could be witnessed for DL
techniques over classical ML techniques, considering the whole benchmark dataset (Table A4). In ML,
hyperparameter optimization or tuning is the problem of choosing a set of optimal hyperparameters for
a learning algorithm. Its value is used to control the process of learning. Instead, DL techniques have
the advantage of allowing more additional experimentation with the model setup. Using DL techniques
on a dataset of this size and for this type of problem therefore shows promise, especially in performance
critical applications. On the other side, the DL model is largely influenced by the processes of tuning
the structural parameters both in computational cost and operational time. However, given that
state-of-the-science large-scale inventories are moving towards deep learning-based classifications,
we can expect that in the upcoming future the growing availability of training dataset will overcome
such limitation. The feature engineering and feature extraction are key, and time consuming parts of
the ML workflow, since these phases transforming training data and augmenting it with additional
features in order to make ML algorithms more effective. DL has been changing this process and deep
neural networks have been explored as black-box modelling strategies.

The final legacy of this work, which was aimed at opening a positive debate among the different
involved domain experts, is summarised in Table 5, where pros and cons of both ML/DL methods are
summarised.

Table 5. Comparative overview table with the key differences between the two proposed frameworks
in the CH domain. From low (*) to high (***).

Machine Learning Deep Learning

Training Set Size Dependencies * ***
Programming Skills * ***
Feature Engineering *** *
Algorithm Structure * ***
Interpretability *** *
Training Time * **
Hyperparameter Tuning *** ***
Processing Power and Expensive hardware (GPUs) ** ***

Author Contributions: Conceptualization, Francesca Matrone, Roberto Pierdicca, and Marina Paolanti;
methodology, Francesca Matrone, Eleonora Grilli and Massimo Martini; software, Eleonora Grilli and Massimo
Martini; validation, Francesca Matrone, Roberto Pierdicca and Marina Paolanti; formal analysis, Francesca
Matrone, Eleonora Grilli and Massimo Martini; investigation, Francesca Matrone, Eleonora Grilli and Massimo
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Appendix A

In this section the detailed results, divided per class, of the tests performed on the Trompone, SMV
and SMG scenes, are included. In addition, the results of the DGCNN-based methods trained on the
whole ArCH dataset have been inserted too. In this latter case, the best hyperparameters’ configuration
from the previous DNN training has been chosen. The metrics selected are Precision, Recall, F1-Score
and Intersection over Union (IoU) of each class for the Test scene.

Table A1. The Trompone scene has been divided into 3 parts: training, validation and test. In this Table
we can see the metrics for every class, calculated on the test set.

Model Metrics Arch Col Mold Floor Do-Wi Wall Stair Vault Furnit

kNN

Precision 0.6813 0.6225 0.5474 0.941 0.2874 0.7116 0.5263 0.8255 0.7406
Recall 0.4734 0.6975 0.5041 0.9698 0.197 0.7339 0.0349 0.9168 0.8026

F1-Score 0.5587 0.6579 0.5248 0.9552 0.2338 0.7226 0.0654 0.8688 0.7704
IoU 0.3876 0.4902 0.3558 0.9142 0.1324 0.5657 0.0338 0.768 0.6265

NB

Precision 0.5217 0.5914 0.416 0.8559 0.0812 0.5836 0.6672 0.7853 0.6891
Recall 0.3384 0.8159 0.1898 0.9263 0.013 0.8625 0.0963 0.7993 0.6288

F1-Score 0.4105 0.6857 0.2607 0.8897 0.0224 0.6961 0.1683 0.7922 0.6575
IoU 0.2582 0.5218 0.1499 0.8013 0.0113 0.5339 0.0919 0.6559 0.4898

DT

Precision 0.8476 0.8924 0.7513 0.9661 0.3544 0.8021 0.4796 0.9113 0.7894
Recall 0.6983 0.8696 0.7317 0.9731 0.2843 0.8099 0.1598 0.9422 0.8767

F1-Score 0.7657 0.8809 0.7414 0.9696 0.3155 0.806 0.2397 0.9265 0.8307
IoU 0.6204 0.7871 0.589 0.941 0.1873 0.6751 0.1362 0.8631 0.7105

RF

Precision 0.9207 0.9618 0.8562 0.9723 0.6054 0.8332 0.9661 0.9346 0.8259
Recall 0.7694 0.8938 0.8066 0.9860 0.2707 0.8776 0.1519 0.9565 0.9321

F1-Score 0.8383 0.9265 0.8307 0.9791 0.3741 0.8548 0.2626 0.9454 0.8758
IoU 0.7216 0.8631 0.7103 0.9590 0.2301 0.7463 0.1511 0.8964 0.7790

DGCNN

Precision 0.4295 0.5789 0.5341 0.9604 0.4120 0.6606 0.4627 0.9121 0.5011
Recall 0.4793 0.6174 0.3877 0.9743 0.1635 0.3767 0.0483 0.7832 0.9452

F1-Score 0.4530 0.5975 0.4493 0.9673 0.2341 0.4798 0.0874 0.8428 0.6550
IoU 0.2928 0.4260 0.2897 0.9366 0.1325 0.3156 0.0457 0.7282 0.4869

DGCNN-
Mod

Precision 0.4448 0.1633 0.6177 0.9662 0.4082 0.6483 0.7121 0.8043 0.6462
Recall 0.5763 0.6328 0.2484 0.9837 0.0771 0.1860 0.1730 0.9199 0.9602

F1-Score 0.5021 0.2596 0.3543 0.9749 0.1297 0.2891 0.2784 0.8582 0.7725
IoU 0.3352 0.1491 0.2153 0.9509 0.0693 0.1689 0.1616 0.7516 0.6293

DGCNN-
3Dfeat

Precision 0.7380 0.9154 0.7269 0.9847 0.4078 0.7413 0.9660 0.9544 0.8657
Recall 0.7493 0.8757 0.6207 0.9845 0.1531 0.8620 0.3320 0.9207 0.9251

F1-Score 0.7436 0.8951 0.6696 0.9846 0.2226 0.7971 0.4941 0.9373 0.8944
IoU 0.5918 0.8101 0.5033 0.9696 0.1252 0.6627 0.3281 0.8819 0.8090

DGCNN-
Mod+3Dfeat

Precision 0.5767 0.6834 0.7042 0.9782 0.4990 0.7492 0.9764 0.9044 0.7791
Recall 0.6257 0.9305 0.4455 0.9870 0.1479 0.7811 0.2844 0.8867 0.9254

F1-Score 0.6002 0.7881 0.5458 0.9826 0.2282 0.7648 0.4405 0.8954 0.8460
IoU 0.4287 0.6502 0.3752 0.9657 0.1287 0.6191 0.2824 0.8106 0.7330
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Table A2. Tests performed on the SMV scene. For the DL approach 10 scenes as training, 1 for validation
(5_SMV_chapel_1) and 1 for test.

Model Metrics Arch Col Mold Floor Do-Wi Wall Stair Vault Roof

kNN

Precision 0.3113 0.8476 0.3978 0.9522 0.0986 0.9701 0.7496 0.8645 0.8063
Recall 0.5513 0.9458 0.6424 0.9147 0.4504 0.7632 0.8545 0.87 0.9402

F1-Score 0.3979 0.894 0.4913 0.9331 0.1618 0.8543 0.7986 0.8673 0.8682
IoU 0.2484 0.8084 0.3257 0.8746 0.088 0.7456 0.6647 0.7656 0.767

NB

Precision 0.0923 0.4263 0.2584 0.7577 0.0063 0.9515 0.7387 0.7486 0.8492
Recall 0.233 0.8622 0.3506 0.7923 0.0121 0.7954 0.6896 0.744 0.764

F1-Score 0.1322 0.5706 0.2975 0.7746 0.0083 0.8665 0.7133 0.7462 0.8043
IoU 0.0708 0.3991 0.1748 0.6321 0.0042 0.7644 0.5544 0.5952 0.6727

DT

Precision 0.2618 0.8864 0.4637 0.9141 0.1251 0.9744 0.7784 0.8411 0.7528
Recall 0.5676 0.9184 0.6194 0.857 0.5875 0.7654 0.8355 0.8549 0.9557

F1-Score 0.3584 0.9021 0.5303 0.8846 0.2063 0.8574 0.8059 0.8479 0.8422
IoU 0.2183 0.8217 0.3609 0.7932 0.115 0.7503 0.675 0.736 0.7275

RF

Precision 0.3586 0.8906 0.4738 0.9650 0.2058 0.9774 0.7873 0.8955 0.7795
Recall 0.6262 0.9352 0.6557 0.9162 0.7115 0.7897 0.8605 0.9101 0.9747

F1-Score 0.4560 0.9124 0.5501 0.9399 0.3193 0.8736 0.8223 0.9027 0.8662
IoU 0.2953 0.8388 0.3794 0.8867 0.1899 0.7755 0.6982 0.8227 0.7640

DGCNN

Precision 0.1406 0.0134 0.1270 0.6641 0.2319 0.7496 0.6302 0.5267 0.8445
Recall 0.0877 0.0004 0.4843 0.8050 0.2501 0.8797 0.0983 0.8757 0.3735

F1-Score 0.1081 0.0007 0.2013 0.7278 0.2406 0.8095 0.1700 0.6578 0.5179
IoU 0.0571 0.0003 0.1119 0.5721 0.1367 0.6799 0.0929 0.4900 0.3494

DGCNN-
Mod

Precision 0.1145 0.7903 0.4249 0.7775 0.4171 0.7946 0.8271 0.8282 0.9420
Recall 0.0543 0.0630 0.4138 0.8571 0.2376 0.9203 0.5938 0.8904 0.9238

F1-Score 0.0737 0.1167 0.4193 0.8154 0.3028 0.8528 0.6913 0.8582 0.9328
IoU 0.0382 0.0619 0.2652 0.6883 0.1784 0.7434 0.5281 0.7516 0.8740

DGCNN-
3Dfeat

Precision 0.2581 0.8243 0.3491 0.8052 0.1767 0.7761 0.8837 0.5968 0.9148
Recall 0.1054 0.1029 0.1473 0.7578 0.0533 0.9074 0.7553 0.8719 0.8735

F1-Score 0.1496 0.1830 0.2072 0.7808 0.0819 0.8367 0.8145 0.7086 0.8937
IoU 0.0808 0.1007 0.1155 0.6404 0.0427 0.7192 0.6870 0.5487 0.8078

DGCNN-
Mod+3Dfeat

Precision 0.1345 0.7007 0.4678 0.8302 0.4664 0.7950 0.8836 0.8528 0.9271
Recall 0.0608 0.4260 0.3021 0.8311 0.3372 0.8874 0.7928 0.8578 0.9670

F1-Score 0.0838 0.5299 0.3671 0.8307 0.3914 0.8386 0.8357 0.8553 0.9466
IoU 0.0437 0.3604 0.2248 0.7104 0.2433 0.7221 0.7177 0.7471 0.8986

Table A3. Tests performed on the SMG scene. For the DL approach 10 scenes as training, 1 for
validation (5_SMV_chapel_1) and 1 for test.

Model Metrics Arch Col Mold Floor Do-Wi Wall Stair Vault Roof

kNN

Precision 0.0797 0.1083 0.2245 0.741 0.1122 0.6433 0.1048 0.6796 0.8658
Recall 0.1515 0.2466 0.3676 0.5441 0.0754 0.6135 0.0522 0.7501 0.7345

F1-Score 0.1044 0.1505 0.2788 0.6275 0.0902 0.6281 0.0696 0.7131 0.7948
IoU 0.0551 0.0814 0.162 0.4572 0.0472 0.4578 0.0361 0.5541 0.6594

NB

Precision 0.2961 0.6661 0.389 0.9708 0.0518 0.8684 0.2194 0.5621 0.9177
Recall 0.3855 0.9163 0.3498 0.9177 0.3581 0.7205 0.6014 0.8871 0.6382

F1-Score 0.335 0.7714 0.3684 0.9435 0.0905 0.7876 0.3215 0.6882 0.7528
IoU 0.2012 0.6279 0.2258 0.893 0.0474 0.6496 0.1916 0.5246 0.6036

DT

Precision 0.3748 0.6723 0.2467 0.9293 0.1100 0.7348 0.3416 0.7929 0.9681
Recall 0.0766 0.1736 0.1379 0.8466 0.3084 0.8823 0.3442 0.8737 0.9439

F1-Score 0.1272 0.2759 0.1769 0.8860 0.1621 0.8018 0.3429 0.8314 0.9559
IoU 0.0679 0.1601 0.0970 0.7953 0.0882 0.6692 0.2069 0.7114 0.9154

RF

Precision 0.6911 0.9480 0.7750 0.9670 0.3842 0.9210 0.7320 0.9281 0.9834
Recall 0.8507 0.9857 0.7304 0.9525 0.1072 0.9424 0.7415 0.9684 0.9605

F1-Score 0.7620 0.9665 0.7520 0.9597 0.1677 0.9316 0.7367 0.9478 0.9718
IoU 0.6155 0.9351 0.6026 0.9225 0.0915 0.8718 0.5831 0.9008 0.9451
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Table A3. Cont.

Model Metrics Arch Col Mold Floor Do-Wi Wall Stair Vault Roof

DGCNN

Precision 0.3748 0.6723 0.2467 0.9293 0.1100 0.7348 0.3416 0.7929 0.9681
Recall 0.0766 0.1736 0.1379 0.8466 0.3084 0.8823 0.3442 0.8737 0.9439

F1-Score 0.1272 0.2759 0.1769 0.8860 0.1621 0.8018 0.3429 0.8314 0.9559
IoU 0.0679 0.1601 0.0970 0.7953 0.0882 0.6692 0.2069 0.7114 0.9154

DGCNN-
Mod

Precision 0.4581 0.7928 0.5973 0.9196 0.1080 0.7740 0.4392 0.8895 0.9799
Recall 0.1685 0.5478 0.2241 0.8662 0.0708 0.9417 0.4487 0.9066 0.9851

F1-Score 0.2464 0.6479 0.3260 0.8921 0.0856 0.8497 0.4439 0.8980 0.9825
IoU 0.1404 0.4791 0.1947 0.8051 0.0446 0.7386 0.2852 0.8148 0.9655

DGCNN-
3Dfeat

Precision 0.4986 0.8980 0.6102 0.9425 0.1004 0.8444 0.4884 0.6890 0.9717
Recall 0.2006 0.8216 0.4907 0.8772 0.2753 0.8326 0.6128 0.9813 0.9314

F1-Score 0.2860 0.8581 0.5440 0.9087 0.1471 0.8384 0.5435 0.8096 0.9511
IoU 0.1668 0.7514 0.3736 0.8326 0.0794 0.7217 0.3731 0.6800 0.9068

DGCNN-
Mod+3Dfeat

Precision 0.6479 0.7626 0.6659 0.9669 0.2183 0.8377 0.4799 0.8870 0.9839
Recall 0.1840 0.9255 0.4974 0.8937 0.3681 0.8910 0.6317 0.9794 0.9831

F1-Score 0.2866 0.8362 0.5695 0.9289 0.2741 0.8635 0.5455 0.9309 0.9835
IoU 0.1672 0.7184 0.3980 0.8672 0.1588 0.7598 0.3750 0.8706 0.9675

Table A4. Tests performed on the A_SMV scene, with the whole ArCH dataset as training. Fourteen
scenes as training, 1 for validation (5_SMV_chapel_1) and 1 for test.

Network Metrics Mean Arch Col Mold Floor Do-Wi Wall Stair Vault Roof

DGCNN

Overall Accuracy 0.7516
Precision 0.7706 0.0945 0.1783 0.2505 0.6248 0.2625 0.7544 0.7396 0.7058 0.9648

Recall 0.7516 0.0517 0.0892 0.3849 0.7819 0.1619 0.9004 0.1039 0.8973 0.8359
F1-Score 0.7398 0.0669 0.1189 0.3035 0.6946 0.2003 0.8210 0.1823 0.7901 0.8958

IoU 0.3534 0.0345 0.0631 0.1788 0.5320 0.1112 0.6963 0.1002 0.6530 0.8111

DGCNN-
Mod

Overall Accuracy 0.8368
Precision 0.8285 0.2891 0.7626 0.4143 0.8251 0.7785 0.7870 0.8007 0.7922 0.9496

Recall 0.8369 0.0804 0.1916 0.3598 0.8739 0.1778 0.9266 0.4979 0.9511 0.9361
F1-Score 0.8223 0.1258 0.3062 0.3851 0.8488 0.2894 0.8511 0.6164 0.8644 0.9428

IoU 0.4699 0.0671 0.1807 0.2384 0.7372 0.1692 0.7407 0.4429 0.7612 0.8918

DGCNN-
3Dfeat

Overall Accuracy 0.8282
Precision 0.8253 0.3499 0.6953 0.4139 0.7220 0.3576 0.8428 0.9290 0.6936 0.9572

Recall 0.8283 0.2824 0.7732 0.3242 0.7103 0.1375 0.8829 0.7095 0.9170 0.9306
F1-Score 0.8226 0.3126 0.7322 0.3636 0.7161 0.1987 0.8624 0.8045 0.7898 0.9437

IoU 0.5144 0.1852 0.5775 0.2221 0.5578 0.1102 0.7580 0.6729 0.6525 0.8934

DGCNN-
Mod+3Dfeat

Overall Accuracy 0.8645
Precision 0.8532 0.2619 0.6940 0.5217 0.7927 0.5660 0.8447 0.8563 0.8295 0.9611

Recall 0.8646 0.0631 0.6780 0.4418 0.8921 0.2615 0.8999 0.7837 0.9474 0.9464
F1-Score 0.8557 0.1017 0.6859 0.4784 0.8394 0.3578 0.8714 0.8184 0.8845 0.9537

IoU 0.5555 0.0535 0.5219 0.3144 0.7233 0.2178 0.7721 0.6926 0.7929 0.9114

Table A5. Tests performed on the B_SMG scene, with the whole ArCH dataset as training. Fourteen
scenes as training, 1 for validation (5_SMV_chapel_1) and 1 for test.

Network Metrics Mean Arch Col Mold Floor Do-Wi Wall Stair Vault Roof

DGCNN

Overall Accuracy 0.7836
Precision 0.8221 0.0008 0.8858 0.1731 0.8827 0.1862 0.7292 0.3888 0.6246 0.9592

Recall 0.7837 0.0021 0.2405 0.2260 0.6684 0.1362 0.9125 0.5093 0.8327 0.8560
F1-Score 0.7939 0.0012 0.3783 0.1961 0.7608 0.1573 0.8106 0.4410 0.7138 0.9046

IoU 0.3763 0.0006 0.2332 0.1086 0.6139 0.0853 0.6815 0.2828 0.5549 0.8259

DGCNN-
Mod

Overall Accuracy 0.8958
Precision 0.8926 0.4766 0.8115 0.4809 0.9653 0.1336 0.8338 0.3568 0.9046 0.9545

Recall 0.8958 0.2325 0.7875 0.3175 0.8539 0.1415 0.8992 0.4853 0.9446 0.9876
F1-Score 0.8920 0.3126 0.7993 0.3825 0.9062 0.1374 0.8653 0.4112 0.9242 0.9708

IoU 0.5348 0.1852 0.6657 0.2364 0.8284 0.0737 0.7625 0.2588 0.8590 0.9432

DGCNN-
3Dfeat

Overall Accuracy 0.8318
Precision 0.8158 0.3956 0.7101 0.3715 0.8150 0.3312 0.8125 0.8818 0.7074 0.9409

Recall 0.8319 0.1195 0.6900 0.1893 0.7180 0.2046 0.8705 0.8094 0.9361 0.9495
F1-Score 0.8181 0.1836 0.6999 0.2508 0.7634 0.2529 0.8405 0.8440 0.8058 0.9452

IoU 0.5078 0.1010 0.5383 0.1433 0.6173 0.1447 0.7249 0.7301 0.6747 0.8960
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Table A5. Cont.

Network Metrics Mean Arch Col Mold Floor Do-Wi Wall Stair Vault Roof

DGCNN-
Mod+3Dfeat

Overall Accuracy 0.9144
Precision 0.9173 0.5318 0.8497 0.6502 0.9566 0.1355 0.8797 0.4661 0.8909 0.9753

Recall 0.9145 0.2578 0.9250 0.5959 0.9030 0.1956 0.8551 0.7101 0.9688 0.9880
F1-Score 0.9148 0.3472 0.8858 0.6219 0.9290 0.1601 0.8672 0.5628 0.9282 0.9816

IoU 0.5997 0.2100 0.7949 0.4512 0.8673 0.0870 0.7655 0.3915 0.8660 0.9630
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