459 research outputs found

    Resilience of multi-robot systems to physical masquerade attacks

    Full text link
    The advent of autonomous mobile multi-robot systems has driven innovation in both the industrial and defense sectors. The integration of such systems in safety-and security-critical applications has raised concern over their resilience to attack. In this work, we investigate the security problem of a stealthy adversary masquerading as a properly functioning agent. We show that conventional multi-agent pathfinding solutions are vulnerable to these physical masquerade attacks. Furthermore, we provide a constraint-based formulation of multi-agent pathfinding that yields multi-agent plans that are provably resilient to physical masquerade attacks. This formalization leverages inter-agent observations to facilitate introspective monitoring to guarantee resilience.Accepted manuscrip

    Near-Optimal Adversarial Policy Switching for Decentralized Asynchronous Multi-Agent Systems

    Full text link
    A key challenge in multi-robot and multi-agent systems is generating solutions that are robust to other self-interested or even adversarial parties who actively try to prevent the agents from achieving their goals. The practicality of existing works addressing this challenge is limited to only small-scale synchronous decision-making scenarios or a single agent planning its best response against a single adversary with fixed, procedurally characterized strategies. In contrast this paper considers a more realistic class of problems where a team of asynchronous agents with limited observation and communication capabilities need to compete against multiple strategic adversaries with changing strategies. This problem necessitates agents that can coordinate to detect changes in adversary strategies and plan the best response accordingly. Our approach first optimizes a set of stratagems that represent these best responses. These optimized stratagems are then integrated into a unified policy that can detect and respond when the adversaries change their strategies. The near-optimality of the proposed framework is established theoretically as well as demonstrated empirically in simulation and hardware

    Semi-Informed Multi-Agent Patrol Strategies

    Get PDF
    The adversarial multi-agent patrol problem is an active research topic with many real-world applications such as physical robots guarding an area and software agents protecting a computer network. In it, agents patrol a graph looking for so-called critical vertices that are subject to attack by adversaries. The agents are unaware of which vertices are subject to attack by adversaries and when they encounter such a vertex they attempt to protect it from being compromised (an adversary must occupy the vertex it targets a certain amount of time for the attack to succeed). Even though the terms adversary and attack are used, the problem domain extends to patrolling a graph for other interesting noncompetitive contexts such as search and rescue. The problem statement adopted in this work is formulated such that agents obtain knowledge of local graph topology and critical vertices over the course of their travels via an API ; there is no global knowledge of the graph or communication between agents. The challenge is to balance exploration, necessary to discover critical vertices, with exploitation, necessary to protect critical vertices from attack. Four types of adversaries were used for experiments, three from previous research – waiting, random, and statistical - and the fourth, a hybrid of those three. Agent strategies for countering each of these adversaries are designed and evaluated. Benchmark graphs and parameter settings from related research will be employed. The proposed research culminates in the design and evaluation of agents to counter these various types of adversaries under a range of conditions. The results of this work are agent strategies in which each agent becomes solely responsible for protecting those critical vertices it discovers. The agents use emergent behavior to minimize successful attacks and maximize the discovery of new critical vertices. A set of seven edge choosing primitives (ECPs) are defined that are combined in different ways to yield a range of agent strategies using the chain of responsibility OOP design pattern. Every permutation of them were tested and measured in order to identify those strategies that perform well. One strategy performed particularly well against all adversaries, graph topology, and other experimental variables. This particular strategy combines ECPs of: A hard-deadline return to covered vertices to counter the random adversary, efficiently checking vertices to see if they are being attacked by the waiting adversary, and random movement to impede the statistical adversary

    A Dynamical System Approach for Resource-Constrained Mobile Robotics

    Get PDF
    The revolution of autonomous vehicles has led to the development of robots with abundant sensors, actuators with many degrees of freedom, high-performance computing capabilities, and high-speed communication devices. These robots use a large volume of information from sensors to solve diverse problems. However, this usually leads to a significant modeling burden as well as excessive cost and computational requirements. Furthermore, in some scenarios, sophisticated sensors may not work precisely, the real-time processing power of a robot may be inadequate, the communication among robots may be impeded by natural or adversarial conditions, or the actuation control in a robot may be insubstantial. In these cases, we have to rely on simple robots with limited sensing and actuation, minimal onboard processing, moderate communication, and insufficient memory capacity. This reality motivates us to model simple robots such as bouncing and underactuated robots making use of the dynamical system techniques. In this dissertation, we propose a four-pronged approach for solving tasks in resource-constrained scenarios: 1) Combinatorial filters for bouncing robot localization; 2) Bouncing robot navigation and coverage; 3) Stochastic multi-robot patrolling; and 4) Deployment and planning of underactuated aquatic robots. First, we present a global localization method for a bouncing robot equipped with only a clock and contact sensors. Space-efficient and finite automata-based combinatorial filters are synthesized to solve the localization task by determining the robot’s pose (position and orientation) in its environment. Second, we propose a solution for navigation and coverage tasks using single or multiple bouncing robots. The proposed solution finds a navigation plan for a single bouncing robot from the robot’s initial pose to its goal pose with limited sensing. Probabilistic paths from several policies of the robot are combined artfully so that the actual coverage distribution can become as close as possible to a target coverage distribution. A joint trajectory for multiple bouncing robots to visit all the locations of an environment is incrementally generated. Third, a scalable method is proposed to find stochastic strategies for multi-robot patrolling under an adversarial and communication-constrained environment. Then, we evaluate the vulnerability of our patrolling policies by finding the probability of capturing an adversary for a location in our proposed patrolling scenarios. Finally, a data-driven deployment and planning approach is presented for the underactuated aquatic robots called drifters that creates the generalized flow pattern of the water, develops a Markov-chain based motion model, and studies the long- term behavior of a marine environment from a flow point-of-view. In a broad summary, our dynamical system approach is a unique solution to typical robotic tasks and opens a new paradigm for the modeling of simple robotics system
    • …
    corecore