
Nova Southeastern University
NSUWorks

CEC Theses and Dissertations College of Engineering and Computing

2018

Semi-Informed Multi-Agent Patrol Strategies
Chad E. Hardin
Nova Southeastern University, cehardin@gmail.com

This document is a product of extensive research conducted at the Nova Southeastern University College of
Engineering and Computing. For more information on research and degree programs at the NSU College of
Engineering and Computing, please click here.

Follow this and additional works at: https://nsuworks.nova.edu/gscis_etd

Part of the Computer Sciences Commons

Share Feedback About This Item

This Dissertation is brought to you by the College of Engineering and Computing at NSUWorks. It has been accepted for inclusion in CEC Theses and
Dissertations by an authorized administrator of NSUWorks. For more information, please contact nsuworks@nova.edu.

NSUWorks Citation
Chad E. Hardin. 2018. Semi-Informed Multi-Agent Patrol Strategies. Doctoral dissertation. Nova Southeastern University. Retrieved
from NSUWorks, College of Engineering and Computing. (1037)
https://nsuworks.nova.edu/gscis_etd/1037.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by NSU Works

https://core.ac.uk/display/215358369?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
https://nsuworks.nova.edu/cec?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
http://cec.nova.edu/index.html
https://nsuworks.nova.edu/gscis_etd?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=nsuworks.nova.edu%2Fgscis_etd%2F1037&utm_medium=PDF&utm_campaign=PDFCoverPages
http://nsuworks.nova.edu/user_survey.html
mailto:nsuworks@nova.edu

Semi-Informed Multi-Agent Patrol Strategies

by

Chad Hardin

A dissertation submitted in partial fulfillment of the requirements for the degree

of Doctor of Philosophy in

Computer Science

College of Engineering and Computing

Nova Southeastern University

2018

ii

Approval

iii

Abstract

The adversarial multi-agent patrol problem is an active research topic with many real-

world applications such as physical robots guarding an area and software agents

protecting a computer network. In it, agents patrol a graph looking for so-called critical

vertices that are subject to attack by adversaries. The agents are unaware of which

vertices are subject to attack by adversaries and when they encounter such a vertex they

attempt to protect it from being compromised (an adversary must occupy the vertex it

targets a certain amount of time for the attack to succeed). Even though the terms

adversary and attack are used, the problem domain extends to patrolling a graph for other

interesting noncompetitive contexts such as search and rescue.

The problem statement adopted in this work is formulated such that agents obtain

knowledge of local graph topology and critical vertices over the course of their travels via

an API ; there is no global knowledge of the graph or communication between agents.

The challenge is to balance exploration, necessary to discover critical vertices, with

exploitation, necessary to protect critical vertices from attack.

Four types of adversaries were used for experiments, three from previous research –

waiting, random, and statistical - and the fourth, a hybrid of those three. Agent strategies

for countering each of these adversaries are designed and evaluated. Benchmark graphs

and parameter settings from related research will be employed. The proposed research

culminates in the design and evaluation of agents to counter these various types of

adversaries under a range of conditions.

The results of this work are agent strategies in which each agent becomes solely

responsible for protecting those critical vertices it discovers. The agents use emergent

behavior to minimize successful attacks and maximize the discovery of new critical

vertices. A set of seven edge choosing primitives (ECPs) are defined that are combined in

different ways to yield a range of agent strategies using the chain of responsibility OOP

design pattern. Every permutation of them were tested and measured in order to identify

those strategies that perform well. One strategy performed particularly well against all

adversaries, graph topology, and other experimental variables. This particular strategy

combines ECPs of: A hard-deadline return to covered vertices to counter the random

adversary, efficiently checking vertices to see if they are being attacked by the waiting

adversary, and random movement to impede the statistical adversary.

iv

Acknowledgements

I want to thank all my professors at Nova Southeastern University as well as the

dissertation committee members Dr. Laszlo, Dr. Mukherjee, and Dr. Mitropoulos; all of

you provided me a very valuable education. I would especially like to thank my

dissertation chair, Dr. Laszlo, for his patience and guidance as I worked through this

challenging achievement. I also could not have done this without the love and support

from my wife Sigrid, thank you so much, Bunny. I need to thank my children Christina

(Sebastian) and Riley for your understanding and sacrifice. I know it wasn’t easy for you,

either. Lastly, I want to thank my employer Koverse and those co-workers for their

support, especially my good friend Gadalia O’Bryan.

v

Table of Contents

Approval ii

Abstract iii

Acknowledgements iv

Table of Contents v

List of Tables vi

List of Figures vii

Chapter 1. Introduction 1

Background 1

Problem Statement 1

Dissertation Goal 7

Research Questions 7

Relevance and Significance 8

Barriers and Limitations 17

Summary 17

Chapter 2. Review of the Literature 19

Chapter 3. Methodology 23

Introduction 23

Adversary Strategies 23

Agent Strategies 25

Experimental Design 42

Data Analysis 44

Summary 45

Chapter 4. Results 47

Introduction 47

Control Agent Strategies 48

Basic Covering Agent Strategies 49

Chained Agent Strategies 51

Chapter 5. Conclusions, Recommendations, and Summary 67

Conclusions 67

Recommendations 76

Summary 79

Appendix A General Agent Strategy 83

References 85

vi

List of Tables

Table 1 - Graph Details 44

Table 2 - Covering Agent Edge Chooser Primitive Naming 48

Table 3 - Top Performing Covering Agents 67

Table 4 - Edge Choosing Primitive Usage in Top Covering Agents 68

vii

List of Figures

Figure 1 - control_rnd strategy 25

Figure 2 - control_lue strategy 26

Figure 3 - control_plue strategy 26

Figure 4 - Covered Vertices Discovery 27

Figure 5 - Graph Topology Discovery 28

Figure 6 - Compound ECP 29

Figure 7 - Covering Agent 30

Figure 8 - rnd ECP 31

Figure 9 - lue ECP 32

Figure 10 - plue ECP 33

Figure 11 - hl ECP 35

Figure 12 - sl_vertex ECP 37

Figure 13 - sl_edge ECP 38

Figure 14 - pb ECP 40

Figure 15 - Graph Topologies 43

Figure 16 - General Effectiveness of the Control Agent Strategies 49

Figure 17 - General Effectiveness of the Basic Covering Agents 50

Figure 18 - General Effective of the Basic Covering and Control Agents 51

Figure 19 - Effectiveness Range Against All Adversaries 52

Figure 20 - General Effectiveness Against all Adversaries (Within 98% of Maximum) 54

Figure 21 - Effectiveness Range Against the Random Adversary 55

Figure 22 - General Effectiveness Against the Random Adversary (Within 98% of Maximum) 56

Figure 23 - Effectiveness Range Against the Waiting Adversary 57

Figure 24 - General Effectiveness and Attack Count against the Waiting Adversary 58

Figure 25- General Effectiveness and Attack Count Scatterplot for the Waiting Adversary 58

Figure 26 - General Effectiveness Against the Waiting Adversary (Within 98% of Maximum) 59

Figure 27 - Effectiveness Range against the Statistical Adversary 60

https://d.docs.live.net/a354c1100be74190/Documents/Classes/DISS/Dissertation%20Report/Dissertation_Report.chardin.2.18.18.docx#_Toc506716932

viii

Figure 28 - General Effectiveness and Attack Count against the Statistical Adversary 61

Figure 29- General Effectiveness and Attack Count against the Statistical Adversary (Scatter Plot) 61

Figure 30 - General Effectiveness Against the Statistical Adversary (Within 98% of Maximum) 63

Figure 31 - Effectiveness Range against the Hybrid Adversary 64

Figure 32 - General Effectiveness and Attack Count against the Hybrid Adversary 65

Figure 33 - General Effectiveness Against the Hybrid Adversary (Within 98% of Maximum) 66

Figure 34 - Overall General Effectiveness of Control, Basic Covering, and top Covering Agents 69

Figure 35 - General Effectiveness of Control, Basic Covering, and top Covering Agents against

Adversaries 70

Figure 36 - General Effectiveness of Control Agents Against all Adversaries 71

Figure 37 - General Effectiveness of Basic Covering Agents Against all Adversaries 72

Figure 38 - General Effectiveness of Top Covering Agents Against all Adversaries 73

Figure 39 - Control Agent General Effectiveness by Graph 74

Figure 40 - Basic Covering Agent General Effectiveness by Graph 75

Figure 41 - Top Covering Agent General Effectiveness by Graph 76

1

Chapter 1.

Introduction

Background

In multi-agent adversarial patrol problems, agents patrol a graph whose vertices are

subject to attack by a set of adversaries. In this problem, the number of vertices on the

graph exceeds the number of agents and so the agents must have a strategy for effectively

patrolling a large number of vertices with a limited ability to monitor all of them at any

moment in time. Practical applications of this problem include physical and network

security. An example of physical security would be robots protecting some area from

intrusion by biological or robotic intruders, such as in a prison, storage complex, or

military base. The problem can also be adapted to network security as mobile software

agents inspecting computers on a network. The goal of the agents in that problem are to

detect and prevent further intrusions or probes on locations that an adversary is attacking.

Problem Statement

The problem is how one or more agents that exist on a weighted undirected

connected graph can best protect as many vertices as possible on that graph from one or

more adversaries attempting to attack a proper subset of those vertices. The agents patrol

the graph in an attempt to thwart the attacks of adversaries. Each adversary is assigned a

single target vertex to observe and attack. The target vertices are not known by the

agents in advance, though they may be discovered as attacks are thwarted. This problem

is a version of the multi-agent patrol problem (Machado, Ramalho, Zucker, & Drogoul,

2002).

2

In discrete timesteps, each agent and adversary can perform one action. An agent can

either transition (or continue to transition) from one vertex along an edge to an adjacent

vertex or remain on its current vertex. An adversary can either attack (or continue to

attack) its target vertex, or not attack. Whether an adversary attacks or not, it is aware if

an agent is occupying its target vertex.

Each edge of the graph has an integer valued weight value w that denotes how many

timesteps it will take an agent to transition from one of its endpoints to the other. While

transitioning, the agent is occupying the edge and cannot make any further actions until it

reaches the adjacent vertex a total of w timesteps later.

An adversary attacks its target vertex by occupying it for K consecutive timesteps,

where fixed integer K, known as the attack interval, is known to all agents and

adversaries (Basilico, Gatti, & Amigoni, 2009). If an adversary’s target is visited by an

agent during an attack, the attack is thwarted. On the other hand, if the adversary

occupies its target vertex for K timesteps without being disrupted by the arrival of an

agent, the attack is successful. Once an adversary begins an attack, it must occupy the

vertex until its attack is either thwarted or successful.

When an attack by an adversary is thwarted by the arrival of an agent to that vertex,

the agent then knows that the vertex is an adversary’s target (i.e., subject to attack). The

set of target vertices known by the agents is referred to as the critical vertices. Note that

if an attack by an adversary on a target vertex is successful, the agents are unaware that

the attacked vertex is a target and thus the vertex will not be added to the critical vertices

set. Such a vertex is considered compromised (i.e., the adversary has won) and is no

longer subject to subsequent attack. The critical vertices are available to all agents at the

3

timestep in which they are discovered. Adversaries do not have knowledge of the critical

vertices and share no information; they operate independently from each other.

When an attack is thwarted, its adversary ‘retreats’ but may attack this vertex (its

target vertex) subsequently. An agent never knows if it has discovered all the target

vertices and so must continue to patrol no matter how many critical vertices have been

discovered. An agent’s strategy is a blend of protecting critical vertices and exploring the

graph for other vertices that may be subject to attack.

To decide what vertex to move to next, agents use a service interface, the agent API,

from which it can obtain information in order to make its decision. The agents use this

information to implement their strategies; they have no access to any other information,

including the graph topology. The functions of the agent API are:

• current_timestep() – Returns the number of timesteps that have elapsed.

• attack_interval() – Returns the attack interval, K.

• incident_edges() – Returns the set of edges incident to the vertex that the

agent currently occupies. This is an opaque and unique integer and does

not provide any other information, such as the destination vertex.

However, it does identify the edge direction from the current vertex to the

destination vertex. Each edge identifier has a reverse method on it to give

the agent another edge identifier which will identify the same edge from

the destination vertex to the current vertex. The result is that each edge has

two identifiers, one for each direction. Agents can, under some strategies,

learn graph topology as they move about the graph.

4

• critical_vertices() – Returns the set of vertices known to be critical (i.e.

subject to attack). Note that if the agent’s current vertex is under attack

and was just discovered to be critical, it will be returned in this set as well.

• discovered_critical() – Returns true if the current vertex is critical for the

first time, meaning that the agent thwarted an attack on it before any other

agent did.

• current_vertex() – Returns the vertex that the agent currently occupies.

This is an opaque and unique integer and provides no further information

about the vertex.

• dist_to_critical_vertex(e, c) – Returns the shortest distance from the

current vertex to critical vertex c along paths starting from edge e, where e

is incident to the current vertex.

There is an additional convenience function, best_dist_to_critical_vertex(c), which

takes as input a critical vertex. Its purpose is to inform the agent which incident edge of

its current vertex will get the agent to that critical vertex the fastest. This function only

uses the previously mentioned API functions to ease agent development for this common

use case. Internally, it calls dist_to_critical_vertex(e,c) for each incident edge and selects

the edge with the shortest distance, returing it as part of a 2-tuple that also contains the

distance.

Each agent implements a decide method that returns its action on every timestep

when it occupies a vertex (i.e. not transitioning on an edge). All agents execute the same

strategy but have independent state. The method’s single input parameter is a reference to

the agent API and its output is an optional edge to indicate movement to an adjacent edge

5

or not. If the agent strategy decides to stay at its current vertex, it simply does not return

an edge. No other information is given to the agent’s strategy (e.g. the graph topology,

the states of other agents, or which strategy the adversaries are using).

Like agents, each adversary implements a decide method. This method has a boolean

input indicating whether the target vertex is occupied by an agent and outputs the

adversary’s action of whether to attack. The method is invoked on every timestep when it

is not attacking. All adversaries execute the same strategy but have independent state. If

an adversary decides to attack, the method is not invoked again until the attack has

succeeded or been thwarted. The inputs to the decide method calls are the only

information the adveraries receive, they do not share any information with each other and

they are not aware of which strategy the agents are using.

Agents and adversaries interact within a single run, which has an initial start state

that defines it and then iterates over discrete timesteps where each agent and adversary

may choose an action, as described in the above paragraphs. The start state is composed

of the following constants: Graph topology and edge weights, attack interval K, number

of agents and their strategy, number of adversaries and their strategy, initial agent

locations, and the assignment of a target vertex for each adversary. All agents in each run

adopt the same strategy, as do the adversaries. During the run, the conditions specified in

the initial state do not change except for the the agent locations, critical vertices, and the

states of individual agents and adversaries.

All adversaries will adopt one of three strategies identified by (Sak, Wainer, &

Goldenstein, 2008): random, waiting, and statistical. Under the random strategy, an

adversary attacks its target vertex at random. Under the waiting strategy, an adversary

6

observes its target vertex and attacks at the timestep after an agent has left the vertex.

This implies that any target vertex left unvisited for K timesteps will always be

compromised. Lastly, under the statistical strategy, an adversary observes its target vertex

over time to construct a statistical correlation of how long after an agent leaves a target

vertex and an agent arrives at that same target vertex. The correlation yields a probability

that the target vertex will remain unvisited for K timesteps based on the observed history.

When the adversary determines that the probability exceeds a certain threshold value

under a minimum predicted statistical error, it initiates the attack.

Agent strategies compete with an adversary strategy with the goal of minimizing

successful adversary attacks. Therefore, agent strategies must make their best effort to

protect the critical vertices while also patrolling the graph to protect the unknown target

vertices that may reside anywhere in the graph. To effectively patrol a graph with a

limited number of agents against adversaries that are attempting to attack an unknown

subset of vertices, the strategy employed by the agent is critical and worthy of research.

Agent strategies that simply seek to uniformly cover the entire graph become susceptible

to attack by adversaries that can predict their future movements throughout the graph.

Therefore, agents should attempt to determine which vertices the adversaries are

attempting to attack and then adjust their movement to protect them. These two opposing

goals require agent strategies to strike a balance between protection and patrol. The

experiment ends when every target vertex either has been compromised or has been

discovered (i.e., added to the critical set).

7

Dissertation Goal

The goal was to create new heuristic agent strategies to specifically counter each of

the three identified adversary strategies. Each of the agent strategies were designed to

perform well against only one of the adversary strategies yet will be tested against all the

adversary strategies. Additional agent strategies were designed to perform well against all

three adversary strategies. This goal addressed the problem by discovering new methods

to counter adversaries and minimize successful attacks by adversaries of differing levels

of complexity.

Research Questions

The first research question was how to develop effective agent strategies that

specifically target one of the three adversarial strategies. Notably, results from this work

on targeted strategies will inform the design of a strategy effective against all three

adversarial strategies.

The second research question was whether general agent strategies can be developed

using ideas from existing strategies for solving related problems as well as new ideas. A

general strategy would be one that performs equally well against any of the three

adversaries. In other words, could a general agent strategy be designed that can

effectively counter all three agent strategies.

The third research question was how well the agent strategies perform when

measured against each other, including new general strategies against non-general

strategies. The measures for comparison were based their ability to protect target vertices

while having the same constant computational complexity. Specifically, the general

strategies have the same level of resource requirements as the non-general strategies.

8

The fourth research question was to determine under what conditions the new agent

strategies perform better. In what ways do such conditions as agent density, graph size,

graph connectedness, and edge lengths affect performance? Of interest was how the

conditions influence the effectiveness of the new agent strategies.

Relevance and Significance

The problem of agents interacting on a graph was originally formulated in (Parsons,

1976) as agents searching for other “lost” agents somewhere on a graph; this problem

was termed pursuit-evasion. Later work determined how to calculate the minimum

number of agents required to find and capture an adversary on a graph (Megiddo,

Hakimi, Garey, Johnson, & Papadimitriou, 1988). The problem of agents defending

against adversaries that can observe the agents to predict their movements and therefore

exploit their predictability to successfully attack was explored and found that stochastic

agent movements reduce the adversaries’ success (Grace & Baillieul, 2005).

The problem of multi-agent patrolling was studied, resulting in a classification of

many different variations of agent architectures, evaluation criteria, and experimental

scenarios (Machado, Ramalho, Zucker, & Drogoul, 2002). However, the evaluation

criteria were centered on a simple reduction of time that vertices are left unvisited; they

did not consider the potential abilities of an adversary to predict and exploit predictable

agent movements. An extension to that problem formulation took into consideration how

an agent will perform against adversaries that can observe and exploit the agent’s

decisions on vertex movement while patrolling (Sak, Wainer, & Goldenstein, 2008). This

extension introduced a new variation of the problem, termed the probabilistic patrolling

problem, by the creation of two new types of adversary strategies: waiting and statistical.

9

The multi-agent patrol problem was identified as a research topic and analyzed by

(Machado, Ramalho, Zucker, & Drogoul, 2002). They formulated the problem, identified

many types of agent strategies to solve the problem, and created the software needed to

conduct experiments and collect empirical data. The problem was structured and

simplified with an unweighted directed graph that agents move about on in discrete

timesteps, where each vertex is equally important regarding patrol frequency. The criteria

chosen to evaluate the performance of the different strategies were based on the concept

of idleness and exploration time. Idleness is the amount of time a vertex is left unvisited

by an agent. The three types of idleness of concern were the instantaneous graph

idleness, the graph idleness, and the worst idleness. All three are defined in (Machado,

Ramalho, Zucker, & Drogoul, 2002, p. 157) and their explanation follows: The

instantaneous graph idleness is “the average instantaneous idleness of all nodes in a given

cycle”, where cycle is synonymous with timestep; the graph idleness is “the average

instantaneous graph idleness over n-cycle simulation”; and the worst idleness is “the

biggest value of instantaneous node idleness occurred during the whole simulation”.

Exploration time is “the number of cycles necessary to the agents to visit, at least once,

all nodes of the graph” (Machado, Ramalho, Zucker, & Drogoul, 2002, pp. 157-158).

Multi-agent patrol strategies that can solve the problem were identified by the

definition of four criteria of the strategy: Reactive or cognitive, communication type, how

the next node of traveling to is chosen, and a coordination strategy (Machado, Ramalho,

Zucker, & Drogoul, 2002). Reactive agents make decisions based only upon information

available from their current timestep and location while cognitive agents pursue a goal

that is followed for multiple timesteps. Communication between agents can occur in three

10

types of ways: flags, blackboard, and messages. There are four categories of how the next

node is chosen by an agent strategy, which are based on the two dimensions of the field of

vision and choice method. The two fields of vision are local and global while the two

choice methods are random or heuristic, resulting in the four categories of local-random,

local-heuristic, global-random, and global heuristic. The last criteria of coordination

strategy determine if the agent behavior results from some central coordination

mechanism or is emergent (no central coordination). By combining the various criteria,

we can see that there are 2 × 3 × 4 × 2 = 48 combinations, although only seven are

actually named and examined: Random Reactive, Conscientious Reactive, Reactive with

Flags, Conscientious Cognitive, Blackboard Cognitive, Random Coordinator, and

Idleness Coordinator (Machado, Ramalho, Zucker, & Drogoul, 2002, p. 158).

For communication types, flag-based communication occurs by altering the

environment (e.g. writing information to and reading information from the graph’s

vertices or edges). For this communication type, agents have access to information stored

at their current location. Blackboard-based communications allow agents to read and

write information to a globally available data store. Lastly, with message-based

communication, agents pass information to each other directly, there is no global or

graph-based storage of information (Machado, Ramalho, Zucker, & Drogoul, 2002, p.

158).

Through experimental results, the seven strategies are classified into three groups:

random group, non-coordinated group, and top group (Machado, Ramalho, Zucker, &

Drogoul, 2002, p. 168). The random group consists of two of the strategies that patrolled

in a random fashion (Random Reactive and Random Coordinator), which performed the

11

worst. The non-coordinated group consists of different two strategies where the agents

worked together in an emergent manner (Reactive with Flags and Blackboard Cognitive),

which performed better than the random group. Finally, the highest performing group

consists of the three remaining strategies: Conscientious Reactive, Conscientious

Cognitive, and Idleness Coordinator.

The best performing group consists of a mix of the four criteria: random and

cognitive, different communication types, global and local information, and both

emergent and centralized coordination. It is important to note that as the number of

agents increase, the performance of all strategies tends to converge. Additionally, the

architectures of the random and non-coordinated group can outperform the top group

when they contain more agents. In other words, the higher number of agents can offset

the lack of coordination and sophistication the better performing groups possess.

Follow-on work expanded the experimental methodology and knowledge of the

performance of difference architecture by creating new graph topologies and new agent

strategies that outperform the previous ones by using reinforcement learning and agent

negotiation or bidding (Almeida, et al., 2004). A theoretical analysis of multi-agent patrol

strategies found that a theoretical optimal strategy can be used as a tool for analyzing

actual strategies in differing classes of graph topologies (Chevaleyre, 2004). Agent

strategies can be further separated into the two different classes of cyclic and partition-

based, meaning whether the agents are responsible for a sub-graph or share the entire

graph. The theoretical optimal performance of both classes was proven. Later work

showed that cyclic strategies can perform just as well as partitioning strategies unless a

12

graph topology contains one or more “tunnels” of vertices (Chevaleyre, Sempe, &

Ramalho, 2004).

The problem of using agents on a graph against adversaries was specified in

(Hespanha, Kim, & Sastry, 1999), which identified a greedy agent strategy which

pursued adversaries on the graph. The strategy was probabilistic in that the agents chose

the next vertex to move to increase the probability of thwarting an attack. Further work

extended that simple strategy to one where the agents cooperate via global

communication in order to optimize their movements on the graph (actually a grid) to

increase the efficiency at finding adversaries among the vertices; the agents make

individual local decisions that increase the global goal of maximizing the number of

adversaries found (Flint, Polycarpou, & Fernandez-Gaucherand, 2002). Work on agent

strategies to predict adversary attacks and thwart them using cooperating agents found

that modeling adversary behavior using Markov chains is possible (Subramanian & Cruz,

2003). Further work showed how a Markov Decision Process approach using

reinforcement learning can enable agents to adapt to adversary behavior as well as

respond to changing adversary behavior (Santana, Ramalho, Corruble, & Ratitch, 2004).

The problem of adversaries in the multi-agent patrol problem was further narrowed

and analyzed to measure the effects of differing agent and adversary strategies when

pitted against each other (Sak, Wainer, & Goldenstein, 2008). It was found that when an

adversary can model the agent behavior, unpredictability is necessary to thwart their

attacks; this is quite different from previous non-adversarial approaches to the multi-

agent patrol problem, where higher regularity results in higher performance because it

minimizes the interval at which any vertex is left unvisited. Higher regularity is sufficient

13

when the adversary is targeting all vertices with equal importance, and the agent

considers all vertices to be equally worth protecting. However, agent regularity is a

detriment if the adversary is formulating the optimal time to attack because the adversary

can easily determine when an agent will not thwart an attack. Therefore, agent

unpredictability is important because it reduces an adversary’s ability to formulate a

successful strategy from observations and predictions on agent behavior. Their problem

formulation heavily influenced the problem formulation of this paper. Their identification

of three classes of adversary strategies (random, waiting, and statistical) represents a

whole range of possible intruder strategies to conduct experiments with.

The random strategy simply chooses when to begin an attack at random. The waiting

strategy observes when agents leave a vertex and attack immediately after. The statistical

strategy is the most complicated; it observes the timesteps that an agent visits its target

vertex and takes note of the intervals between each visit. Every time an agent leaves the

target vertex, the adversary looks at previous intervals and calculates the probability that

an agent will return to that vertex at least K timesteps later. If the probability of not

returning is above a minimum threshold, the adversary will initiate the attack. Also, their

research revealed exactly which types of agent strategies perform best against each of the

adversary strategies under a wide variety of experimental variables such as the number of

agents and K.

Similar work which focuses on perimeter patrol rather than area patrol has also

resulted in many contributions that apply to the problem of this paper. Examples of this

are agent strategies with adjustable amounts of non-determinism to maximize patrol

efficiency while maintaining a high probably of thwarting attacks (Agmon, Kraus, &

14

Kaminka, 2008) (Agmon, Sadov, Kaminka, & Kraus, 2008), dealing with malfunctioning

agents and uncertainty of information on the adversary (Agmon, Kraus, & Kaminka,

2009) (Agmon, Kraus, Kaminka, & Sadov, 2009), expanding the types of events in the

experiment beyond an attack by an adversary as a boolean event to that based on the time

taken for the agents to detect the attack (Agmon, 2010), and finally combining the above

using a Markov model to create perimeter patrol agents under a wide variety of agent

correctness of behavior, sensing of adversary actions, and perimeter topologies (Agmon,

Kaminka, & Kraus, 2011).

Game-theoretic approaches to the single-agent patrol problem with adversaries has

resulted in strong mathematical models for agent strategies where the agent can solve the

problem by reducing it to a hierarchy of sub-problems within basic linear, ring, and star

graph topologies (Amigoni, Gatti, & Ippedico, 2008). Follow-on work created a more

general mathematical model and improved the ability for agents to respond to changing

topologies by sensing adversaries beyond those in directly adjacent vertices (Amigoni,

Basilico, & Gatti, 2009). Later work introduced uncertainties in the agent’s ability to

sense adversaries in vertices beyond those that are immediately adjacent and introduced a

strategy that stochastically chooses a non-direct path to adversaries so as to make it more

difficult for adversaries to model and predict agent movement, all with a computationally

efficient algorithm (Basilico, Gatti, & Rossi, 2009) (Basilico, Gatti, Rossi, Ceppi, &

Amigoni, 2009).

A deterministic algorithm for thwarting attacks by adversaries based upon the

concept of deadlines for vertex visitation (similar to K, but different for each vertex),

where the agent must visit each vertex often enough to make a successful attack

15

impossible, was formulated as a Constraint Satisfaction Problem (CSP) (Basilico, Gatti,

& Amigoni, 2009).

The best agent strategy for a random intruder is one where the agents follow a TSP

path with equal intervals and traveling in the same direction (Sak, Wainer, &

Goldenstein, 2008). However, calculating the TSP path with large graphs is intractable,

so some heuristic is necessary. A novel heuristic was created based on Newton’s law of

gravitation, where each vertex has a mass that increases the longer it is left unvisited by

an agent, which performs well relative to other TSP heuristics as the number of agents

increase (Sampaio, Ramalho, & Tedesco, 2010). Another heuristic for solving TSP is to

use ant colony optimization, where agents travel within the graph and deposit

pheromones on the edges they travel on as a form of communication with each other. The

amount of pheromones on an edge indicates to the other agents how much time has

passed since an edge was last traversed. When these agents arrive at a vertex, it senses the

amount of pheromones at each incident edge and greedily chooses the edge that has not

been visited for the longest amount of time. This results in an emergent behavior where

approximate solutions to a TSP of a graph are gradually achieved as the ants move about

the graph (Dorigo & Gambardella, 1997).

For agents patrolling a graph with critical vertices of weighted importance, an agent

strategy of calculating the probability of such vertices being successfully attacked (the

risk) at each timestep, where the probability increases the longer an agent does not visit a

vertex, has resulted in two well performing two-phase based heuristics (Park, Kim, &

Jeong, 2012). In this two-phased strategy, the first phase calculates the agent paths,

taking into consideration the initial risks of all critical vertices. In the second phase,

16

during subsequent timesteps the agent will calculate alternate paths using the current

calculated risks and switch to the path that reduces the risk if one exists. Further work

with the weighted importance of critical vertices introduced an agent communication

capability of passing messages to each other when they are directly adjacent, where a

single agent is identified as a leader that coordinates the behavior of the others through

such message passing (Pasqualetti, Durham, & Bullo, 2012).

17

Barriers and Limitations

A limitation of this study was that only three adversarial strategies and six graphs

were used during experimentation. The adversaries were identified and used previously

by (Sak, Wainer, & Goldenstein, 2008); they represent three classes of complexity and

sophistication for adversary strategies. The simplest class is based on random behavior, a

slightly more sophisticated class is the waiting strategy, and the most sophisticated is the

statistical strategy. The six graphs also come from previous research (Almeida, et al.,

2004) and represent several classes of problem domains where the graphs take the form

of rings, corridors, islands, grids, and otherwise complex environments. The

implementation of the strategies is detailed in the Experimental Design section of the

chapter. The graphs are shown in Figure 15 of the same chapter.

A limitation of this problem formulation was that the only communication or

coordination among the agents is the sharing of which vertices have been discovered to

be critical. Limited communication and decentralized decision making among the agents

is a common theme among the current research as it tends to more closely model real

world constraints for agents (Flint, Polycarpou, & Fernandez-Gaucherand, 2002), (Iocchi,

Marchetti, & Nardi, 2011), (Franco, López-Nicolás, Sagüés, & Llorente, 2015), (Alam,

Edwards, Bobadilla, & Shell, 2015), and (Yan & Zhang, 2016). Such constraints apply to

agents patrolling the physical world, whether the agents are physical robots or software

programs traversing a computer network from computer to computer.

Summary

The multi-agent patrol problem was introduced, and a problem statement was

defined in suitable detail to formulate the dissertation goal of creating new heuristic agent

18

strategies. Four research questions were identified and described to guide the research in

the attainment of this goal. Prior research was identified and described to prove the

relevance and significance of this proposed research. Finally, the barriers and limitations

of this proposed research have been delineated so that the scope of the research is clear.

19

Chapter 2.

Review of the Literature

This review includes research concerning the multi-agent area-patrol problem with

multiple adversaries. The Relevance and Significance section of the Introduction chapter

includes many of the same literature reviewed in this section; it is a broad overview of the

problem. This chapter, in contrast, is focused on literature that supports the dissertation

goal, research questions, and methodology. This section includes multi-agent area-patrol

problems that are single-agent or single-adversary oriented, as long there is an adversary.

Several domains of this problem will be excluded, however. The related perimeter-patrol

version of the full problem is excluded. Research more focused on physical robots in the

application of patrol problems is also excluded as they tend to be more concerned with

robot sensors and effectors. Lastly, simpler versions of the problem that are patrol related

but without adversaries is excluded except for (Chevaleyre, 2004), as such research tends

to be focused solely on maximizing graph coverage or reducing vertex idleness.

A theoretical analysis of the multi-agent patrol problem which organized the agent

strategies from previous research found some interesting results (Chevaleyre, 2004)

(Chevaleyre, Sempe, & Ramalho, 2004). First, it was found that good performance could

be achieved with very simple agents who are simply reactive in nature and with minimal

or non-existent inter-agent communication. Second, the agents performed better when the

graph was partitioned such that an agent only patrolled within an assigned partition.

However, this research did not take into consideration the negative effects that adversary

strategies have on the agents’ patrol effectiveness. For example, an adversary can attack

as soon as an agent leaves a vertex and would have an advantage because it could

20

complete the attack in the interval that the vertex is left unvisited. Instead, the research

simply focused on measuring and minimizing the idleness of the vertices during agent

patrol, which is only beneficial for thwarting attacks from a simple adversary strategy

that does not take into consideration the agents’ behavior.

The research of (Paruchuri, Pearce, Tambe, Ordonez, & Kraus, 2007) introduced the

multi-agent patrol problem with adversaries. It structured the problem as a Bayesian

game with a new heuristic to efficiently find an optimal agent strategy to counter an

unknown adversary strategy. The adversary can observe the agents’ movements in the

graph and determine if there are any vertices that the agent does not visit often during its

patrol. If such a vertex is found, the adversary begins the attack. If the agent does not

return to that vertex in time, the attack is successful. Once the adversary decides to attack,

it must continue to attack for a fixed number of timesteps until it is either successful or

has been thwarted. Thus, this research introduced the concept of an adversary that

observes the agents and can exploit the agents’ actions, necessitating agent strategies that

take the adversary’s strategy into account. Note that the problem was formulated where

the agent was aware of the adversary observing its movements, so their strategies were

constantly updated back and forth in response to each other’s behavior. This is applicable

to the dissertation goal of designing a new agent that can counter any of the three

adversary strategies. They modeled the scenario as a Bayesian game which has a well-

known problem of being NP-hard to solve because the situation becomes a Stackleberg

game (Conitzer & Sandholm, 2006) where the agent and adversary take turns changing

their strategy and therefore causing the other’s strategy to change in response. Praveen et.

all designed a heuristic method for approximately solving this problem in a tractable

21

manner. However, the research did not identify or measure the results of multiple types of

agent and adversary strategies when competing against each other and once an attack is

successful or thwarted, the game ends.

Game-theoretic models were applied to the multi-agent patrol problem with

adversaries in (Amigoni, Gatti, & Ippedico, 2008), where the graph can change

dynamically while the game is underway. Note that this proposed research does not allow

the graph to change while the agents and adversaries are running but the approach taken

by Amigoni, Gatti, & Ippedico is interesting because it removes the agents’ ability to

monitor the adversary. However, a major deficiency of the research is that, unlike this

proposed research, the game only runs until a single attack by an adversary is successful

or thwarted.

The research of (Sak, Wainer, & Goldenstein, 2008) described three distinct

adversary strategies of random, waiting, and statistical, which will be used in this

research. Several agent strategies were created to counter these adversaries based on total

random walking and modified shortest paths of all vertices with random permutations.

The strategies could optionally have the agents responsible for separate graph partitions.

This work provided a framework for measuring the performance of agents against

adversaries using randomly generated graphs. However, those agent strategies required

pre-computation (e.g. graph partitioning, k-means clustering, or TSP route calculation)

and performed poorly when competing against any other adversary strategy than the one

each was designed to counter.

A non-game approach was taken by (Basilico, Gatti, & Amigoni, 2009) where the

goal was to design an algorithm that generated a static deterministic patrol route where

22

each vertex was guaranteed to stay protected from successful attack. To do this, the route

must visit each vertex before the attack interval has elapsed since the last visit. They

argue that if this goal can be achieved for a graph, it is fundamentally superior to a non-

deterministic agent strategy, since it would become irrelevant what strategy the adversary

was using. One problem of this approach is that it requires the pre-computation of the

route, which would require some type of central coordinator to prepare the agents and

place them in their starting positions prior to patrolling. A possible improvement would

be to satisfy the same goal with de-centralized and minimally communicating agents.

Related follow-on work added an interesting adversary requirement of having to navigate

the graph to reach the target vertex and limiting the ability of the adversary to only

observe agents near the adversary’s current location (Basilico, Gatti, Rossi, Ceppi, &

Amigoni, 2009). However, that work did not take into consideration a multi-agent system

and was again centrally coordinated.

Generating a nondeterministic patrol path for agents against an adversary that has

complete knowledge of the agent’s positions can be done linear time (Agmon, Kaminka,

& Kraus, 2011). However, their algorithm is limited to a perimeter patrol rather than area

patrol, which is much simpler. Their previous work also focused on perimeter patrol only

(Agmon, 2010). It may be possible to extend this body of work to adapt it to the area

patrolling, which was done by (Alam, Edwards, Bobadilla, & Shell, 2015). They created

algorithms using Markov chains in a distributed manner, without requiring centralized

coordination or agent communication.

23

Chapter 3.

Methodology

Introduction

The methodology answers the following four research questions: Can effective agent

strategies be developed from existing strategies for solving related problems? Can

effective agent strategies be developed for countering any adversary? How do these

developed agent strategies perform in relation to each other when measured? How do the

problem variables affect agent strategy performance? The following sections of this

chapter explain how the research questions on developing agent strategies were

answered, how the strategies performed, and an examination of the dependence of

performance on program parameters.

Adversary Strategies

Four adversary strategies were created: random, waiting, statistical, and hybrid. At

each timestep, these strategies are informed whether an agent occupies their target vertex

and uses the information to decide whether to start an attack at that timestep. As stated

previously, once an agent initiates an attack, the agent is committed to the attack for K

timesteps; an attack is only successful if an agent never occupies the vertex for the entire

K timesteps. Note that none of these adversaries were implemented to attack if the target

vertex is occupied, as that would be pointless since it would result in the attack being

immediately thwarted. The following paragraphs will discuss the design of each

adversary strategy, in order from least to most sophisticated.

24

The random adversary is the simplest and is the only one to not maintain any state

between timesteps. At each timestep, the random adversary will initiate an attack with a

1/K probability; it will not attack if the vertex is occupied.

The waiting adversary, which is slightly more complex, will only start an attack if

the target vertex was occupied at the previous timestep and is currently unoccupied.

Therefore, it will not attack during the first timestep or any subsequent time step until an

agent occupies the target vertex at least once. This adversary only keeps a single variable

in state between timesteps: Was the target vertex occupied or not during the previous

timestep?

The statistical adversary is the most complex one in that it attempts to predict the

optimal time to attack by observing agent occupation of the target vertex over time, it

attacks when it predicts that there is a chance of success. Say a maximal unoccupied

interval (MUI) is a longest interval of time that a given vertex is unoccupied by an agent.

This adversary will track the total number L of MUIs for its target vertex, and the number

C of MUIs of duration at least K timesteps. The adversary attacks if and only if 𝐶 ≥
𝐿

2
.

Intuitively, it attacks if there appears to be at least a 50% chance that the vertex will

remain unoccupied for at least K timesteps, based on history.

The hybrid adversary is a combination of the previous three, in which each target

vertex is assigned one of those three adversary strategies. The distribution of these

adversaries among the target vertices are approximately uniform. This strategy is a more

complicated scenario for an agent because an approach that is good for one target vertex

will be bad for another (because they could have different adversaries). Therefore, an

agent must be more general in nature when countering the hybrid strategy.

25

Agent Strategies

The research method taken for the first two questions was to develop agent strategies

and quantitatively evaluate them with respect to each of the four adversary strategies.

Two categories of agent strategies were created: control and covering. The control

strategies are relatively simple compared to the covering strategies and serve as a

baseline to determine if the more advanced capabilities of the covering strategies result in

improvements. When an agent arrives at a vertex, the only decision its strategy must

make is which incident edge of its current vertex to choose next. The agent will then

begin traversing the edge and after arriving at the endpoint of the edge, will chose another

edge, repeating the cycle. The agent cannot remain on the vertex, therefore an edge must

be chosen.

Control Agent Strategies

The three control strategies are named random (control-rnd), least-recently-used-

edge (control-lue), and probabilistic-least-recently-used-edge (control-plue). The control-

rnd strategy simply chooses the next edge to move to in a completely random manner.

control_rnd_decide = function (api)

 edges = api.incident_edges().toList();

 return edges[random(0, edges.length())];

Figure 1 - control_rnd strategy

The control-lue strategy chooses the incident edge of its current vertex that the agent

has not chosen for the longest amount of time, incident edges that have never been

chosen are assumed to have been so for the duration of the entire simulation. If two or

more incident edges have been unchosen for the same amount of time, one of them is

picked randomly. After choosing an edge, the control-lue strategy stores the timestep that

the edge was chosen, it will do this for all edges it chooses for the duration of the

26

simulation. Remember that the API only provides a unique and opaque identifier for each

edge and does not provide information about the destination vertex and the identifier is

unique to not only the edge but also the edge direction. For example, an edge that goes

from vertices a and b will have two edge identifiers: one for a to b and another for b to a.

ects = map of edge ids to timesteps when chosen;

control_lue_decide = function (api)

 edge = api.incident_edges()

 .map(e -> (ects.get(e).or(0),e))

 .min(((ts1,e1),(ts2,e2)) -> ts1 >= ts2)

 .map((ts,e) -> e);

 ects.put(edge, api.current_timestep());

 return edge;

Figure 2 - control_lue strategy

The control-plue control strategy is like the control-lue one but differs slightly by

choosing the incident edge probabilistically, where the edges that have been unchosen the

longest have a higher chance of being chosen than the others. Specifically, the number of

timesteps which each incident edge has been unchosen are summed as 𝑆 = ∑ 𝑡𝑠(𝑒)𝑒∈𝐸 ,

where E is the set of incident edge identifiers and ts is a function that returns the number

of timesteps since the edge was last chosen or the number of timesteps elapsed during the

simulation if the edge has never been chosen. The probability of an edge being chosen is

the number of timesteps it has been unchosen divided by the S: 𝑃(𝑒) =
𝑡𝑠(𝑒)

𝑆
.

ects = map of edge ids to timesteps when chosen;

control_plue_decide = function (api)

 ts = api.current_timestep();

 edges = api.incident_edges()

 .map(e -> (ts - ects.get(e).or(0),e))

 .flatMap((ts,e) -> n_copies(ts, e))

 .toList();

 edge = edges[random(0, edges.length())];

 ects.put(edge, api.current_timestamp());

 return edge;

Figure 3 - control_plue strategy

27

Covering Agent Strategy

The covering agent strategy differs from the control strategies by: Using a new

concept of critical vertex covering, learning the graph topology, and being composed of

an edge choosing primitives (ECP) that is specified when the agent is instantiated. Each

topic will be described in the following paragraphs and then the pseudocode code of the

strategy will be presented and explained.

Critical vertex covering is where each agent takes sole responsibility for the

protection of a subset of the critical vertices. When an agent arrives at a vertex, the API

provides information on if the agent was the first to thwart an attack on that vertex. If that

is the case, the agent will place that vertex into its covered vertex set, which is a subset of

the critical vertex set. The agent can deduce if a critical vertex is covered by another

agent by checking if it is not in its covered vertex set. Knowing this information,

combined with learning the graph topology, allows the agent to also avoid the critical

vertices that are covered by other agents.

covered_vertices = {}; the critical vertices covered by this agent

uncovered_vertices = {}; the critical vertices covered by other agents

covered_vertex_visit_ts = a map of covered vertices to last visit time

covering_decide = function(api)

 v = api.current_vertex();

 ts = api.current_timestep();

 if api.discovered_critical() then

 covered_vertices.add(v);

 uncovered_vertices = api.critical_vertices() – covered_vertices;

 covered_vertex_visit_ts.put(v, ts);

 edge = some logic to choose an edge

 return edge;

Figure 4 - Covered Vertices Discovery

The graph topology is learned by keeping state when travelling on an edge and

comparing it to the information after arriving at the destination vertex. Specifically,

before travelling on an edge, the current timestep and chosen edge are stored. After

arriving at the destination vertex, the current timestep is subtracted from the stored

28

timestep to calculate the amount of time it takes to traverse that edge. Additionally, the

current vertex is noted and the fact that the previously chosen edge has the current vertex

as its destination is stored.

edge_lengths = map of edge id to edge timestep traversal time lengths

edge_distinations = map of edge id to its destination vertex

prev_edge = null;

prev_ts = null;

prev_valid = false;

covering_decide = function(api)

 if prev_valid then

 edge_lengths.put(prev_edge, api.current_timestep() – prev_ts);

 edge_distinations.put(prev_edge, api.current_vertex());

 edge = some logic to choose an edge

 prev_edge = edge

 prev_ts = api.current_timestep();

 prev_valid = true;

 return edge;

Figure 5 - Graph Topology Discovery

An ECP is what the covering agent delegates to in order to choose the next edge to

travel on. When delegating to an ECP, the strategy provides it the agent API, the covered

vertex set, and the information that the agent has deduced: the set of vertices covered by

other agents, the edge lengths, and the edge destinations. There are many possibilities for

ECP design and it is not necessarily the case that just one could be written that would

perform well. Instead, it is possible to arrange multiple ECPs in a chain, giving each one

an opportunity to choose an edge or not. This represents a layering and prioritization of

strategies rather than a monolithic design. Thus, there is a special type of compound ECP

which is composed of two ECPs and asks the first one to choose an edge and if it does

not, asks the second. This compound ECP can be composed of itself recursively to

support any number of ECPs in a chain. However, one of the ECPs (ideally the last in the

chain) must choose an edge.

29

ecp_choose_1 = primary ecp

ecp_choose_2 = secondary ecp

compound_ecp_choose = function(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations)

 return ecp_choose_1(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations)

 .or(

 ecp_choose_2(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations));

Figure 6 - Compound ECP

The covering agent strategy is thus a combination of the aforementioned behavior

and an ECP, the pseudocode code for the covering agent strategy is the combination of

the previously described pseudocodes.

30

covered_vertices = {}; the critical vertices covered by this agent

uncovered_vertices = {}; the critical vertices covered by other agents

covered_vertex_visit_ts = a map of covered vertex to last visit time

edge_lengths = map of edge ids to edge lengths

edge_distinations = map of edge ids to destination vertex

prev_edge = null;

prev_ts = null;

prev_valid = false;

ecp_choose = the ECP choose function that the agent strategy will use

covering_decide = function(api)

 v = api.current_vertex();

 ts = api.current_vertex();

 if api.discovered_critical then

 covered_vertices.add(v);

 uncovered_vertices = api.critical_vertices() – covered_vertices;

 covered_vertex_visit_ts.put(v, ts);

 if prev_valid then

 edge_lengths.put(prev_edge, ts – prev_ts);

 edge_distinations.put(prev_edge, v);

 edge = ecp_choose(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations);

 prev_edge = edge

 prev_ts = api.current_timestep();

 prev_valid = true;

 return edge;

Figure 7 - Covering Agent

There are many types of ECPs, which will be discussed shortly, but first it is

important to describe a decisive ECP, which will always choose an edge. Because the

covering agent strategy delegates to a ECP to choose an edge and an edge must be

chosen, at least one ECP in a chain, preferably the last, must choose an edge every time it

is asked to do so. There are three types of decisive ECPs, each of which is closely related

to the three control agent strategies but take advantage of the information that the

covering agent strategy provides them. These ECPs are random (rnd), least-recently-

used-edge (lue), and probabilistic-least-recently-used-edge (plue). Each will be described

in the following paragraphs, one for each.

31

The rnd ECP will choose an incident edge randomly but will avoid edges whose

endpoint is known to be covered by another agent. Thus, it is like the control-rnd agent

but is more sophisticated by avoiding occupying critical vertices that are already

protected by another agent. This gives each agent using the rnd ECP more time to protect

the vertices that it itself covers. Specifically, this ECP takes the incidence edge set from

the agent API and culls all edges that are known to go to the covered vertex of another

agent from consideration for choosing. If after culling those edges, there are no edges left

to choose (which means all edges go to such vertices), this ECP will switch to a fall back

behavior of randomly selecting any of the incident edges. It does this because it is a

decisive ECP, which must always choose an edge.

rnd_ecp_choose = function(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations)

 all_edges = api.incident_edges();

 culled_edges = all_edges

 .remove(e -> uncovered_vertices

 .contains(edges_destinations.get(e))

 .toSet();

 edges = if culled_edges.isEmpty() then all_edges else culled_edges;

 return edges[random(0, edges.length())];

Figure 8 - rnd ECP

The lue ECP will, like the control-lue agent strategy, deterministically choose the

edge that it has not chosen for the longest time. However, incident edges that the covered

agent reports have a destination vertex that is covered by another agent are treated as if

they were chosen exactly one timestep in the past, which makes them much less likely to

be chosen. If an edge has never been chosen, it is assumed to have been unchosen for the

number of timesteps that have elapsed in the simulation. Thus, each edge is given a score

equal to how much time has passed since the ECP last chose it. The edge with the highest

32

score is chosen and if there are multiple such edges, one them is chosen randomly. After

choosing an edge, the ECP stores the timestep that the edge was chosen so that another

edge will be chosen the next time the agent occupies the same vertex. This agent is

decisive and will always choose an edge, even if all edges have a destination vertex that

is covered by another agent.

ects = map of edges to timesteps when chosen;

lue_ecp_choose = function(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations)

 ts = api.current_timestep();

 edge = api.incident_edges()

 .map(e ->

 If uncovered_vertices

 .contains(edge_destinations.get(e)) then

 return (ts – 1, e);

 else

 return (ects.get(e).or(0), e);

 .min((ts1, e1),(ts2,e2)) -> ts1 >= ts2);

 ects.put(edge, ts);

 return edge;

Figure 9 - lue ECP

The plue ECP, like the control-plue agent strategy, chooses incident edges that it has

not travelled on for the longest time, but in a probabilistic manner. Each edge is given a

probability weight greater than one, which is equal to the number of timesteps that have

elapsed since it was last chosen. An exception is that incident edges that the covered

agent reports to have a destination vertex that are covered that are known to go to the

covered vertex of another agent are given a minimum possible weight of the value one.

Conceptually, the edges are chosen by a roulette wheel selection and is implemented as

follows. First, an array with a length equal to the sum of all weights is created and each

edge is inserted into this array as many times as its weight. Finally, a random number

from zero to the size of array is chosen and the edge at that index in the array is chosen.

33

While this implementation could encounter run time memory allocation errors for very

large edge weights, number of vertices, and number of agents (because the array would

have large length), such errors did not occur during this experiment because the edge

weights and number of vertices are relatively low. Additionally, the ratio of agents to

vertices is relatively high. Thus, the array that was created at run time was never large

enough to cause an error.

ects = map of edges to timesteps when chosen;

plue_ecp_choose = function(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations)

 ts = api.current_timestep();

 edges = api.incident_edges()

 .map(e ->

 if uncovered_vertices

 .contains(edge_destinations.get(e)) then

 return (1, e);

 else

 return (ts - ects.get(e).or(0), e));

 .flatMap((w,e) -> n_copies(w, e))

 .toList();

 edge = edges[random(0, edges.length())];

 ects.put(edge, ts);

 return edge;

Figure 10 - plue ECP

Three covering agents are defined that are each composed of exactly one of the

decisive ECPs: covering-rnd, covering-lue, and covering-plue. These represent the

simplest possible covering agent strategies and are complementary to the three control

agents control-rnd, control-lue, and control-plue but differ by avoiding the covered

vertices of other agents.

In addition to these decisive ECPs, there are four indecisive ECPs that do not always

choose an edge. These are designed to be used in a chain of ECPs by using one or more

compound ECPs that ends with one of the decisive ECPs. These four ECPs are hard-limit

34

(hl), two variants of soft-limit (either vertex or edge focused) named sl-vertex and sl-

edge, and peek-back (pb). Each will be described in the following paragraphs.

The hl ECP determines if the agent must return to any one of its covered vertices so

that it arrives at that vertex before K timesteps have elapsed since last occupying it. To do

this, it uses the deduced edge weights from the covering agent to heuristically determine

how many time steps past this deadline will be remaining for each covered vertex after

the agent can arrive at it from its current vertex. The heuristic to calculate the maximum

estimated distance for each vertex uses the maximum learned incident edge weight 𝑊𝐼

and the maximum global learned edge weight 𝑊𝐺. The maximum learned incident edge

weight is calculated as 𝑊𝐼 = max
𝑖∈𝐼

𝑤(𝑖), where I is the set of incident edges and the

function w returns the integer weight of that edge if deduced by the covering agent or the

maximum value for the data type (e.g. 32-bit integer) if unknown. The maximum learned

global edge weight is calculated as 𝑊𝐺 = {
𝑀𝐴𝑋_𝐼𝑁𝑇𝐸𝐺𝐸𝑅, |𝐸| = 0

max
𝑒∈𝐸

𝑣(𝑒) , |𝐸| > 0, where E is the set

of all edges that the covering agent has deduced the weight of and the function v returns

the integer weight value for that deduced edge weight; MAX_INTEGER is the maximum

value for the data type (e.g. 32-bit integer). For each covered vertex, the strategy

calculates the deadline timestep 𝐷(𝑣) = 𝑝(𝑣) + 𝐾, where v is the covered vertex, the

function p returns the last timestep that the agent occupied a vertex or zero if never

occupied (it is never negative), and K is the attack interval. The number of timesteps

remaining until the deadline is exceed is 𝑅(𝑣) = 𝐷(𝑣) − 𝑡𝑠, where ts is the value of the

current timestep of the simulation; the output is a positive number if there is time

remaining until the deadline and negative if the deadline has passed. Next, a heuristic of

the estimated maximum number of timesteps needed to reach a covered vertex v for any

35

chosen incident edge of the current vertex is 𝑀(𝑣) = 𝑊𝐼 + 𝑊𝐺 + 𝑑(𝑣), where the

function d is the agent API call (best_dist_to_critical_vertex) to return the distance of the

shortest path to that vertex. The value L for each covered vertex is calculated as 𝐿(𝑣) =

𝑅(𝑣) − 𝑀(𝑣), if L is positive then it is estimated that the agent can reach the covered

vertex before the vertex is susceptible to a successful attack. Next, all covered vertices

with a value for L that is negative are discarded from further consideration, as they cannot

be reached in time. If any covered vertices are remaining, then this ECP will choose the

one with the lowest value of 𝑑(𝑣) and use the agent API to choose the incident edge that

is the first step on that shortest path. Otherwise, this ECP will decline to choose an edge,

giving the next ECP in the chain an opportunity to choose one.

hl_ecp_choose = function(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations)

 ts = api.current_timestep();

 k = api.attack_interval();

 global_max = edge_lengths.values()

 .max((length1,lenthg2) -> length1 >= length2)

 .or(MAX_INTEGER);

 local_max = api.incident_edges()

 .map(e -> edge_lengths.get(e).or(MAX_INTEGER))

 .max((length1,length2) -> length1 >= length2);

 distances = covered_vertices

 .map(v -> (v, api.best_dist_to_critical_vertex(v))

 .toMap();

 return covered_vertices

 .map(v -> (v, covered_vertex_visit_ts.get(v).or(0)))

 .map((v,t) -> (v, t + k))

 .map((v,d) -> (v, d – ts))

 .map((v,r) -> (

 v,

 r – (local_max + global_max + distances.get(v).dist()))

 .remove((v,l) -> l < 0)

 .map((v,t) -> v)

 .map(v -> (v, distances.get(v).dist())

 .min(((v1,t1),(v2,t2)) -> t1 >= t2))

 .map((v,t) -> v)

 .map(v -> distances.get(v).edge());

Figure 11 - hl ECP

36

The two variants of the soft-limit ECPs differ from the hl ECP in that they allow the

agent to return to a covered vertex after K timesteps have elapsed since last occupying it.

These two soft-limit ECPs accomplish this in slightly different ways but neither will ever

choose an edge whose other endpoint is a vertex covered by another agent.

The first way, which is sl-vertex, calculates a tuple for each vertex covered by the

agent. This tuple is composed of the covered vertex, the edge which will get the agent to

that vertex the quickest, and the score for that vertex. The score is calculated with the

function 𝑆(𝑣) =
(𝑡𝑠+𝑑(𝑣))−𝑝(𝑣)

𝐾
, where v is a covered vertex of this agent. Intuitively, it is

when the agent can arrive at covered vertex v subtracted by the last time it visited it,

divided by the attack interval. Thus, it is the ratio of how many timesteps will have

passed when arriving at that vertex since last visiting it, to the attack interval. Next, all

covered vertices with scores less than the value one are removed from further

consideration and the edge for the covered vertex that can be arrived at the soonest is

chosen. If all covered vertices had scores less than the value one, no edge is chosen.

37

sl_vertex_ecp_choose = function(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations)

 ts = api.current_timestep();

 k = api.attack_interval();

 distances = covered_vertices

 .map(v -> (v, api.best_dist_to_critical_vertex(v))

 .toMap();

 return covered_vertices

 .map(v -> (v, covered_vertex_visit_ts.get(v).or(0)))

 .map((v,t) -> (v,t,distances.get(v)))

 .map((v,t,(e,d)) -> (v,t,e,d,ts + d))

 .map((v,t,e,d,a) -> (e,(a – t) / k), d))

 .remove((e,s,d) -> s < 1)

 .remove((e,s,d) -> uncovered_vertices.contains(e))

 .map((e,s,d) -> (e,d))

 .min((e1,d1),(e2,d2)) -> d1 >= d2)

 .map((e,d) -> e);

Figure 12 - sl_vertex ECP

The second way is sl-edge, which differs by choosing an edge based on calculating a

cost of the incident edges rather than scoring the covered vertices. However, the only

incident edges that have a cost calculated and considered are those that the covering agent

reports do not have an endpoint that is the covered vertex of another agent (a “safe”

incident edge). The cost of each such “safe” edge is calculated by considering each

covered vertex as well. First, the amount of “time left” after a “deadline” for each

covered vertex, when traveling though one of the edges, is calculated, formally as

𝐿(𝑒, 𝑣) = (𝑝(𝑣) + 𝐾) − (𝑡𝑠 + 𝑑(𝑒, 𝑣)), where e is an incident edge, v is a covered

vertex, and the function d is the API call (dist_to_critical_vertex) that returns how many

timesteps it will take to arrive at vertex v through incident edge e. In this formula, the

“deadline” for the vertex is (𝑝(𝑣) + 𝐾) and the arrival time is (𝑡𝑠 + 𝑑(𝑒, 𝑣)). By

subtracting them, it is determined how many timesteps will be left until the deadline time

passes when travelling to that vertex through that edge. Thus, to determine a cost for each

38

edge, a vector of integers is created for that edge and each covered vertex using

𝐹(𝑒, 𝑣) = 𝐿(𝑒, 𝑣) for all 𝑣 with 𝐿(𝑒, 𝑣) > 0; note that all combinations of incident edge

and covered vertex that result in negative time being left at arrival are removed from the

vector and are not considered any further. Next, any edge whose 𝐹(𝑒) invocation results

in an empty vector is removed from consideration as a choice. Lastly, the sum of each

element of a vector is calculated to arrive at the edge cost: 𝐶(𝑒) = ∑ ∑ 𝑖𝑖 of 𝐹(𝑒,𝑣)𝑣∈𝑉 ,

where e is a “safe” incident edge and V is the set of covered vertices. Note that the cost is

always a positive number. This ECP then chooses the edge with the lowest cost.

sl_edge_ecp_choose = function(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations)

 ts = api.current_timestep();

 k = api.attack_interval();

 distances = covered_vertices

 .map(v -> (v, api.best_dist_to_critical_vertex(v))

 .toMap();

 avoid_edges = edge_destinations

 .remove((e,v) -> uncovered_vertices.contains(e))

 .map((e,v) -> e)

 .toSet();

 return api.incident_edges()

 .remove(e -> avoid_edges.contains(e)

 .map(e -> (

 e,

 covered_vertices

 .map(v -> (v, covered_vertex_visit_ts.get(v).or(0)))

 .map((v,t) -> (

 t + k,

 ts + api.distance_to_critical_vertex(e,v))

 .map((d,a) -> d – a)

 .remove(time_left -> time_left < 0)

 .toList())

 .remove((e,time_lefts) -> time_lefts.isEmpty())

 .map((e,time_lefts) -> (e,time_lefts.sum())

 .min((e1,s1),(e2,s2)) -> s1 >= s2)

 .map((e,vs) -> e);

Figure 13 - sl_edge ECP

39

The remaining ECP is pb, it checks each non-critical vertex it is occupying to

determine if returning to it immediately after leaving it will thwart an attack on it. To do

this, it randomly chooses an incident edge that does not go to another agent’s covered

vertex and then immediately returns to that same vertex along the same edge, in reverse.

Each vertex is only checked once and when the current vertex has already been checked,

this ECP declines to choose an edge. Eventually, all vertices will either be checked or be

critical and this primitive will cease choosing edges altogether. It is designed to quickly

find attacks in the beginning of the simulation and then stop as soon as possible.

40

vertices_checked = {};

edges_checked = {};

struct ReturnToCheck = {

 return_edge,

 check_vertex

}

return_to_check = null;

checking_vertex = null;

pb_ecp_choose = function(

 api,

 covered_vertices,

 uncovered_vertices,

 covered_vertex_visit_ts,

 edge_lengths,

 edge_destinations)

 v = api.current_vertex();

 chosenEdge = null;

 vertices_checked.addAll(api.critical_vertices());

 if checking_vertex != null then

 if v == checking_vertex then

 vertices_checked.add(checking_vertex);

 checking_vertex = null;

 if return_to_check != null then

 if api.incident_edges().contains(return_to_check.return_edge) then

 chosen_edge = return_to_check.return_edge;

 checking_vertex = return_to_check.check_vertex;

 return_to_check = null;

 if chosen_edge == null then

 if !vertices_checked.contains(v) then

 avoid_edges = edge_destinations

 .remove((e,v) -> uncovered_vertices.contains(e))

 .map((e,v) -> e)

 .toSet();

 chosen_edge = api.incident_edges

 .remove(e -> edges_checked.contains(e))

 .map(e -> (e, edge_destinations.get(e).or(null)))

 .map((e,d) -> (

 e,

 d.map(v -> covered_vertices.contains(v).or(false))

 .remove((e,v) -> v == true)

 .remove((e,v) -> avoid_edges.contains(e))

 .map((e,v) -> e)

 .any();

 if chosen_edge != null then

 return_to_check = new ReturnToCheck {

 return_edge = chosen_edge.reversed(),

 check_vertex = v

 };

 if chosen_edge != null then

 edges_checked.add(chosen_edge);

 return chosen_edge;

Figure 14 - pb ECP

41

By combining these ECPs in different ways (but always ending with a decisive

ECP), many varying behaviors can be created that interact with adversaries in diverse

ways. Many combinations (198 in total) were created with three being just the terminal

primitives alone and with different combinations of all others without duplicates, always

ending with a terminal primitive. However, only a few were assumed to perform best

against the different adversaries, which will be explained in the following paragraphs.

Each of the indecisive ECPs were designed to be effective against different

adversaries. The hl ECP was designed to be effective at countering the waiting adversary

because any critical vertex that remains unvisited for longer than K timesteps will

definitely be compromised. The two soft-limit ECPs (sl-vertex and sl-edge) were

designed to counter the statistical and random adversaries; where it is not vital to return

to vertices within K timesteps because it is unlikely that an attack on them will begin as

soon as an agent leaves them. The pb ECP was also designed to counter the waiting

adversary because its goal is to find vertices being attacked immediately after an agent

leaves them.

The decisive ECPs were also designed with specific adversary strategies in mind,

when used in a chain. The rnd ECP is designed to confuse the statistical adversary by

being unpredictable. The lue and plue ECPs were designed to counter the random and

waiting strategies.

Because there are so many possible combinations of covering agent strategies with

different chains of ECPs, it is not practical to define them all. In fact, it was not entirely

known if the ECP combinations that were assumed to be effective against certain

adversaries would actually be so. However, some general assumptions are outlined in the

42

following paragraphs as to what the result will be for certain combinations against the

adversaries. Ultimately, it was determined through experimentation of all possibilities as

listed in Error! Reference source not found. and measuring their effectiveness which c

ombinations actually perform best against which adversaries. Furthermore, it was

assumed that the top performing combinations of ECPs for the covering agent strategy

would outperform the control strategies.

When designing the ECPs, it was assumed that certain combinations would perform

best against certain adversary strategies. For the random adversary, the combination of a

chain of one of the soft-limit ECPs followed by either the lue or plue would outperform

other combinations. For the waiting strategy, the triple combination of the hl, followed by

pb, and terminating in either the lue or plue ECPs would outperform other combinations.

Finally, for the statistical adversary, one of the soft-limit ECPs followed by the rnd ECP

was designed to perform the best in comparison to other combinations.

For the third and fourth research question, the performance of the agent strategies

will be analyzed based upon the variables of the problem such as graph topology, number

of agents and adversaries, and K. The exact variables will be described in the next

section.

Experimental Design

The experimental design was to run simulations of each agent strategy against

adversary strategies under a range of different scenarios. Variables of each scenario

were: One of six graph topologies as shown in Figure 15 from (Almeida, et al., 2004, p.

480); the ratio of the number of agents to vertices 𝑁1 ∈ {5%, 10%, 15%, 20%, 25%} and

the ratio of the number of adversaries to vertices 𝑁2 ∈ {5%, 10%, 15%, 20%, 25%} from

43

Portugal & Rocha (2013, p. 330); and the attack interval based on the number of agents

and the length of the approximate TSP cycle of the graph 𝐾 ∈ {
1

8
×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
,

1

4
×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
,

1

2
×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
, 1 ×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
, 2 ×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
}, where Tcycle is the length of the approximate shortest TSP

cycle of the graph (factoring in edge weights) and n is the number of agents (Sak,

Wainer, & Goldenstein, 2008, p. 130). Thus, there will be 6 × 5 × 5 × 5 = 750

scenarios.

The chosen graphs characterize six classes of environment for the agents. The

Circular and Corridor graphs are the simplest and can represent patrolling a perimeter and

hallway, respectively. The Grid graph can approximate a warehouse where much of the

environment is uniform but with a small but complex area where coordination occurs for

humans that work in the warehouse. The Islands graph can represent the computer

network of a large corporation with corporate offices, a small country with cities, or the

Internet backbones of the entire world connecting continents together. Finally, graphs

Map A and Map B represent arbitrarily complex environments with Map B differing

from Map A by in the inclusion of barriers to isolate the graph into four areas.

Figure 15 - Graph Topologies

44

Information on these graphs have been computed and are listed in Table 1 below. Note

that approximate TSP was calculated using the Nearest Neighbor Algorithm; finding an

optimal TSP path is not critical for this research. The TSP length is given in both the

number of vertices and the sum of the edge weights for the path.

Graph # Vertices # Edges Approximate

TSP Length

(# Vertices)

Approximate

TSP Length

(Edge

Weights)

Map A 50 105 63 380

Map B 50 69 73 512

Circular 50 50 51 178

Corridor 49 48 97 392

Islands 50 84 59 332

Grid 50 91 58 353

Table 1 - Graph Details

Each scenario gives rise to multiple matches over all combinations of the agent

strategies and adversary strategies, where each of the agent strategies played against each

of the adversary strategies. A match is composed of X=10 games, each of which has

different randomly selected agent starting positions and target vertices. Each game runs

for 𝑅 = 100 × 𝑇𝑐𝑦𝑐𝑙𝑒 timesteps (Sak, Wainer, & Goldenstein, 2008, p. 130).

Data Analysis

The effectiveness of agent strategies was calculated from the following

measurements, all calculated from experiment outputs from each game. The two types of

measurements are raw and calculated. The raw measurements are the number of attacks

45

and the number of attacks that were thwarted. There are five calculated measurements.

The first calculated measurement in the attack thwarted ratio, which is the percentage of

attacks there were thwarted. The next is general effectiveness, which is the percentage of

target vertices that were not compromised at all. The deterrence effectiveness is the

percentage of target vertices where no attack was attempted. The patrol effectiveness is

the percentage of the target vertices that were discovered to be critical by the agents.

Lastly, the defense effectiveness is the percentage of initially thwarted critical vertices

that were never compromised, which differs from the general effectiveness by

considering that some target vertices may never be attacked (i.e., how effective the

strategy is at continuing to thwart attacks on a target vertex without it becoming

compromised later).

The game measurements were then summarized into a match measurement, which is

the average and standard deviation of each of the ten game measurements for a match.

With each match measurement are the variables for that match and its enclosing scenario,

combined. The graph, number of agents, ratio of agents to vertices, number of

adversaries, ratio of adversaries to vertices, and K are from the scenario. The agent

strategy and adversary strategy are from the match. The result is a multi-dimensional

cube of measurements that were analyzed to determine how the agents perform under

varying conditions.

Summary

The methodology to answer the research questions was to develop the adversaries,

control agent strategies, and the covering agent strategy along with its ECPs. Experiments

were run which evaluate the performance of the agent strategies under many varying

46

conditions. The design of the agent strategies has been described along with the new

concepts of covered vertex covering and ECPs. The experimental design is clearly

defined and backed up by prior research. Graphs used by previous research were obtained

and evaluated for their properties such as their approximate TSP length and application to

real world scenarios.

The analysis of the data relied on the defined measurements of raw data and

effectiveness of an agent. The output of an experiment resulted in a n-dimensional cube

in data that was analyzed across many different slices to determine when and why agents

perform well or not.

47

Chapter 4.

Results

Introduction

The agents are named in a very particular way in the experiment results to describe

their behavior. First, the control agent strategies are named control_lue, control_plue, and

control_rnd for least-recently-used-edge, probabilistic-least recently-edge, and random,

respectively. The covering agent strategy names being the prefix control_ followed by

the ordered list of the edge chooser primitive names, separated by the “_” character. For

example, covering_hl_rnd is the covering agent strategy with the hard limit and random

edge chooser primitives, in that order. The names, descriptions, and examples of these

edge choosing primitives of the covering agent strategy are listed in Table 2.

Edge Chooser

Primitive Name

Description Terminal? Example

lue Least Recently Used

Edge

Yes covering_lue

plue Probabilistic Least

Recently Used Edge

Yes covering_plue

rnd Random Yes covering_rnd

hl Hard Limit No covering_hl_rnd

pb Peek Back No covering_hl_pb_lue

sl-vertex Soft Limit (Vertex

Focused)

No covering_sl-vertex-plue

48

Edge Chooser

Primitive Name

Description Terminal? Example

sl-edge Soft Limit (Edge

Focused)

No covering_sl-edge-rnd

Table 2 - Covering Agent Edge Chooser Primitive Naming

Control Agent Strategies

The control agent strategies showed clear differences in their performance against

the four adversaries, as can be seen in Figure 16. The control-lue agent strategy

performed much better under the general effectiveness measure than the other two control

strategies against the random and waiting adversaries. The control-rnd strategy did the

best against the statistical adversary and worse overall against the other adversaries. The

control-plue ranked in between the other two control agent strategies in all cases, which

is not surprising considering that it functions like mixture of the deterministic control-lue

and nondeterministic control-rnd strategies. Overall, the control-lue agent performed

best.

49

Figure 16 - General Effectiveness of the Control Agent Strategies

Basic Covering Agent Strategies

The basic covering agents are simply the covering agents with a single terminal edge

choosing primitive. Their performance is illustrated in Figure 17. Like with the control

agents, the least recently used edge variant (covering-lue) outperformed the probabilistic

least recently used edge (covering-plue) and random (covering-rnd) variants when going

against the random, waiting, and hybrid strategies. Unlike with the control agents, the

covering-plue agent outperformed the covering-rnd when against the statistical adversary.

44%
49%

57%

50% 50%

21%
17%

74%

37% 37%

17%
13%

78%

36% 36%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

random waiting statistical hybrid Average

G
en

er
al

 E
ff

ec
ti

ve
n

es
s

Adversaries

control-lue control-plue control-rnd

50

Figure 17 - General Effectiveness of the Basic Covering Agents

The basic covering agents did not perform as well as their control agent counterparts,

as can be seen in Figure 18. The additional behaviors that the covering agents add is

detrimental in all situations when only a single terminal edge choosing primitive is used.

26%

49%

57%

39% 40%

2% 4%

80%

28% 29%

1% 1%

73%

25% 25%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

random waiting statistical hybrid Average

G
en

er
al

 E
ff

ec
ti

ve
n

es
s

Adversaries

covering-lue covering-plue covering-rnd

51

Figure 18 - General Effective of the Basic Covering and Control Agents

Chained Agent Strategies

Overall

The effectiveness measurements of all 198 agent strategies against all adversaries are

illustrated in Figure 19, which has the agent strategies on the horizontal axis but are

unlabeled. The chart sorts all agents in descending order of their general effectiveness

average against all adversaries, left to right. The corresponding defense, patrol, and

2
6

%

4
9

%

5
7

%

3
9

%

4
0

%

2
% 4

%

8
0

%

2
8

%

2
9

%

1
%

1
%

7
3

%

2
5

%

2
5

%

4
4

%

4
9

%

5
7

%

5
0

%

5
0

%

2
1

%

1
7

%

7
4

%

3
7

%

3
7

%

1
7

%

1
3

%

7
8

%

3
6

%

3
6

%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

random waiting statistical hybrid Average

G
en

er
al

 E
ff

ec
ti

ve
n

es
s

Adversaries

covering-lue covering-plue covering-rnd

control-lue control-plue control-rnd

52

deterrence effectiveness measurements are also shown (also the average against all

adversaries), showing how they relate to general effectiveness. General effectiveness of

all agents ranges from about 25% to about 83%, showing a wide disparity in performance

among the agents overall. General effectiveness is inversely correlated with patrol

effectiveness such that as patrol effectiveness rises, general effectiveness decreases.

Defense effectiveness is somewhat noisy but in general lowers along with general

effectiveness. Deterrence effectiveness is stable and not correlated with general

effectiveness.

Figure 19 - Effectiveness Range Against All Adversaries

The top performing agents measured by general effectiveness are illustrated in

Figure 20. This chart shows the agents who score is within 98% of the maximum general

effectiveness score. There are a lot of variants in this list and while it is tempting to just

choose the top performing agent as the best, such a strategy does not pick the ultimate

essence of what combinations and orderings of edge choosing primitives is optimal.

Therefore, a strategy was used to pick out the truly optimal agent by also considering the

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Avg. General Effectiveness Avg. Defense Effectiveness

Avg. Patrol Effectiveness Avg. Deterance Effectiveness

53

number of edge choosing primitives an agent has, in addition to its general effectiveness.

To facilitate this selection, a simple strategy of choosing the agent with the highest

general effectiveness and the lowest count of edge choosing primitives was taken. The

rational for this is that the top performing combinations of ECPs have general

effectiveness scores that are very close to each other and the absolute highest performing

agents can have a very large number of ECPs in comparison to similarly performing

agents with lower numbers of ECPs. However, the larger numbers of ECPs do not

necessarily mean that these agents are superior. Instead, their slightly higher performance

is a statistical anomaly and does not capture the true essence of a superior performing

strategy of an agent with very similar performance but less ECPs. In the case of overall

agent performance against all adversaries, the covering_hl_pb_rnd combination of three

edge choosing primitives was selected and is highlighted in Figure 20. While there are

ten other agents that performed better, they all have four or five edge choosing primitives

instead of three. Additionally, the general effectiveness of this agent strategy was

82.20%, which is within 99.82% of the maximum general effectiveness of 83.25% for the

covering_hl_sl-edge_pb_rnd agent. Therefore, it is argued that the covering_hl_pb_rnd

(explained in further detail in Appendix A) agent represents the true optimal agent

strategy, with the chained combination of the Hard-Limit, Peek Back, and Random edge

choosing primitives; the sl-edge ECP from the covering_hl_sl-edge_pb_rnd agent did

perform better, but so did the covering_hl_sl-vertex_pb_rnd agent. Thus, it is argued that

neither the inclusion of the sl_edge or sl_vertex ECPs are critical for identifying the most

appropriate agent in terms of selecting the optimal combination and number of ECPs for

an agent.

54

Figure 20 - General Effectiveness Against all Adversaries (Within 98% of Maximum)

83.35%

83.31%

83.29%

83.26%

83.25%

83.24%

83.23%

83.21%

83.20%

83.20%

83.20%

83.20%

83.18%

83.15%

82.63%

82.62%

82.58%

82.53%

82.52%

82.52%

82.49%

82.48%

82.48%

82.47%

82.47%

82.44%

82.43%

82.42%

82.42%

82.41%

82.41%

82.41%

82.41%

82.40%

82.38%

82.37%

82.35%

81.82%

81.72%

80.0% 81.0% 82.0% 83.0% 84.0%

covering_hl_sl-edge_pb_rnd

covering_hl_pb_sl-edge_sl-vertex_rnd

covering_hl_sl-edge_sl-vertex_pb_rnd

covering_hl_sl-vertex_pb_rnd

covering_hl_sl-vertex_pb_sl-edge_rnd

covering_hl_sl-edge_pb_sl-vertex_rnd

covering_hl_sl-vertex_sl-edge_pb_rnd

covering_hl_pb_sl-edge_rnd

covering_hl_pb_sl-vertex_sl-edge_rnd

covering_sl-vertex_hl_pb_rnd

covering_hl_pb_rnd

covering_sl-vertex_hl_pb_sl-edge_rnd

covering_sl-vertex_hl_sl-edge_pb_rnd

covering_hl_pb_sl-vertex_rnd

covering_hl_sl-edge_pb_plue

covering_hl_sl-vertex_sl-edge_pb_plue

covering_sl-vertex_hl_sl-edge_pb_plue

covering_hl_pb_sl-edge_sl-vertex_plue

covering_hl_sl-vertex_pb_sl-edge_plue

covering_hl_pb_sl-edge_plue

covering_hl_sl-edge_sl-vertex_pb_plue

covering_hl_pb_sl-vertex_plue

covering_hl_pb_sl-vertex_sl-edge_plue

covering_hl_sl-edge_pb_sl-vertex_plue

covering_hl_sl-vertex_pb_plue

covering_sl-vertex_hl_pb_sl-edge_plue

covering_pb_hl_sl-edge_rnd

covering_pb_sl-vertex_hl_sl-edge_rnd

covering_sl-vertex_hl_pb_plue

covering_hl_pb_plue

covering_pb_hl_sl-edge_sl-vertex_rnd

covering_pb_hl_rnd

covering_pb_hl_sl-vertex_sl-edge_rnd

covering_pb_sl-vertex_hl_rnd

covering_sl-vertex_pb_hl_rnd

covering_sl-vertex_pb_hl_sl-edge_rnd

covering_pb_hl_sl-vertex_rnd

covering_sl-vertex_pb_hl_sl-edge_plue

covering_pb_hl_sl-edge_plue

General Effectiveness

A
ge

n
ts

55

Against the Random Adversary Strategy

Against the random adversary, the range of general effectiveness among all the

agents varies considerably from about 1% to about 69% (see Figure 21). The deterrence

effectiveness is always 0% for all agents because no behavior on the part of the agent will

deter the random adversary from attacking. The patrol effectiveness is inversely

correlated with general effectiveness because discovering more critical vertices (patrol

effectiveness) comes at the cost of not being able protect critical vertices from even a

single successful attack (general effectiveness).

Figure 21 - Effectiveness Range Against the Random Adversary

The top performing agents, as measured by general effectiveness are

covering_hl_lue, covering_sl-vertex_hl_sl-edge-lue, and covering_sl-vertex_hl_lue with

scores of 69.0%, 69.0%, and 69.1%, respectively, as illustrated in Figure 22. Using the

criteria to select the optimal strategy as described in the previous section, the best agent

strategy is covering_hl_lue, which is a chain of the hard limit and least-recently-used-

edge choosing primitives. Even though this agent is not the absolute best as measured, it

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Avg. General Effectiveness Avg. Defense Effectiveness

Avg. Patrol Effectiveness Avg. Deterance Effectiveness

56

is simpler than the top two and within 99.85% of the top performing agent. It is not

surprising that this agent performs well because it covers the graph uniformly and at

regular intervals unless a critical vertex is in danger of being unvisited for longer than K

timesteps, in which case it heads directly to that vertex as close as possible to exactly

after K timesteps have elapsed. The least-recently-used-edge choosing primitive was

created to counter the random adversary, so it is encouraging that the results indicate its

effectiveness. Note that the simpler control_lue and covering_lue agents only had a

general effectiveness score of 44.24% and 26.23%, respectively, showing that by adding

vertex covering and the hard limit edge chooser, the performance of an agent can increase

greatly (to 69%).

Figure 22 - General Effectiveness Against the Random Adversary (Within 98% of Maximum)

Against the Waiting Adversary Strategy

When going against the waiting adversary, agents have a correlation between general

effectiveness and both defense and deterrence effectiveness (see Figure 23). Patrol

69.10%

69.00%

69.00%

68.78%

68.63%

68.61%

68.58%

68.46%

68.43%

68.34%

68.20%

68.07%

68.07%

67.96%

67.0% 67.5% 68.0% 68.5% 69.0% 69.5% 70.0%

covering_sl-vertex_hl_lue

covering_sl-vertex_hl_sl-edge_lue

covering_hl_lue

covering_hl_sl-vertex_lue

covering_pb_sl-vertex_hl_lue

covering_hl_sl-edge_sl-vertex_lue

covering_sl-vertex_pb_hl_lue

covering_pb_sl-vertex_hl_sl-edge_lue

covering_hl_sl-edge_lue

covering_hl_sl-vertex_sl-edge_lue

covering_pb_hl_sl-edge_lue

covering_sl-vertex_pb_hl_sl-edge_lue

covering_pb_hl_lue

covering_pb_hl_sl-vertex_sl-edge_lue

General Effectiveness

A
ge

n
ts

57

effectiveness is inversely correlated with general effectiveness. The general effectiveness

measurements for all agents against the waiting adversary has a range of 0.84% to

94.30%. The control_lue control strategy performed best against the all the control

strategies with a general effectiveness score of 49%. The base covering strategy

covering_lue performed best against all the basic covering strategies with a general

effectiveness score of 49%.

Figure 23 - Effectiveness Range Against the Waiting Adversary

An interesting result is the correlation of general effectiveness to attack count;

general effectiveness decreases as the attack count decreases (Figure 24 and Figure 25).

Because the waiting adversary only attacks after an agent leaves its target vertex, a low

attack count indicates that the agent is not visiting target vertices.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Avg. General Effectiveness Avg. Defense Effectiveness

Avg. Patrol Effectiveness Avg. Deterance Effectiveness

58

Figure 24 - General Effectiveness and Attack Count against the Waiting Adversary

Figure 25- General Effectiveness and Attack Count Scatterplot for the Waiting Adversary

The top performing agents against the waiting adversary are illustrated in Figure 26,

of which the optimal agent is covering_hl_pb_rnd. This agent is composed of the Hard-

Limit, Peek-Back, and Random edge choosers, in that order. This agent has a general

effectiveness score of 94.06%, which is within 99.75% of the top score of 94.30%. The

Peek-Back edge chooser was designed specifically to counter the waiting adversary, so

0

2,000

4,000

6,000

8,000

10,000

12,000

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

A
tt

ac
k

C
o

u
n

t

G
en

er
al

 E
ff

ec
ti

ve
n

ss

Avg. General Effectiveness Avg. Attack Count

0

2,000

4,000

6,000

8,000

10,000

12,000

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

A
tt

ac
k

C
o

u
n

t

General Effectiveness

Avg. Attack Count Trendline

59

its presence in the optimal and all top performing agents is expected and its contribution

to countering the waiting adversary is proven.

Figure 26 - General Effectiveness Against the Waiting Adversary (Within 98% of Maximum)

94.30%

94.28%

94.17%

94.17%

94.16%

94.14%

94.11%

94.09%

94.07%

94.06%

94.04%

94.03%

94.01%

93.87%

93.12%

92.97%

92.96%

92.94%

92.92%

92.92%

92.84%

92.80%

92.78%

92.69%

92.67%

92.64%

92.61%

92.60%

92.57%

92.50%

92.46%

92.41%

92.41%

91% 92% 93% 94% 95%

covering_hl_sl-vertex_sl-edge_pb_rnd

covering_sl-vertex_hl_pb_sl-edge_rnd

covering_hl_pb_sl-vertex_sl-edge_rnd

covering_hl_sl-edge_sl-vertex_pb_rnd

covering_hl_sl-edge_pb_sl-vertex_rnd

covering_hl_sl-edge_pb_rnd

covering_hl_pb_sl-vertex_rnd

covering_hl_pb_sl-edge_sl-vertex_rnd

covering_hl_sl-vertex_pb_rnd

covering_hl_pb_rnd

covering_sl-vertex_hl_pb_rnd

covering_hl_pb_sl-edge_rnd

covering_hl_sl-vertex_pb_sl-edge_rnd

covering_sl-vertex_hl_sl-edge_pb_rnd

covering_hl_pb_sl-edge_lue

covering_hl_sl-edge_sl-vertex_pb_lue

covering_hl_pb_sl-edge_sl-vertex_lue

covering_hl_sl-edge_pb_lue

covering_sl-vertex_hl_pb_lue

covering_hl_sl-vertex_sl-edge_pb_lue

covering_hl_sl-vertex_pb_lue

covering_hl_pb_sl-vertex_lue

covering_sl-vertex_hl_pb_sl-edge_lue

covering_sl-vertex_hl_sl-edge_pb_lue

covering_hl_sl-vertex_pb_sl-edge_lue

covering_hl_pb_lue

covering_hl_sl-edge_pb_sl-vertex_lue

covering_hl_pb_sl-vertex_sl-edge_lue

covering_hl_pb_sl-edge_plue

covering_hl_sl-vertex_sl-edge_pb_plue

covering_hl_pb_sl-vertex_sl-edge_plue

covering_hl_pb_plue

covering_hl_sl-vertex_pb_plue

General Effectiveness

A
ge

n
ts

60

Against the Statistical Adversary Strategy

When going against the statistical adversary, the general effectiveness of an agent is

correlated with the defense effectiveness. The general effectiveness for all agents has a

range of about 57% to about 92.5% (Figure 26). General effectiveness is inversely

correlated to attack count (Figure 28 and Figure 29), since the statistical adversary only

attacks when it predicts it will be successful, a reduce attack count implies that the

adversary is unable to predict success and hence does not attack. Since lower attack

counts result in higher general effectiveness scores, an agent performs best by preventing

attacks in the first place.

Figure 27 - Effectiveness Range against the Statistical Adversary

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Avg. General Effectiveness Avg. Defense Effectiveness

Avg. Patrol Effectiveness Avg. Deterance Effectiveness

61

Figure 28 - General Effectiveness and Attack Count against the Statistical Adversary

Figure 29- General Effectiveness and Attack Count against the Statistical Adversary (Scatter Plot)

The agents that score the highest general effectiveness scores (within 98% of the

maximum score) and illustrated in Figure 30. Of those, the agent covering_hl_rnd is the

simplest and is within 99.5% of the much more complicated maximum scoring agent.

The covering_rnd and control_rnd agents scored only 79.6% and 78.2%, respectively.

The much more predictable agents covering_lue and control_lue scored 56.99% and

0

50

100

150

200

250

300

350

400

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
tt

ac
k

C
o

u
n

t

G
en

er
al

 E
ff

ec
ti

ve
n

es
s

Avg. General Effectiveness Avg. Attack Count

0

50

100

150

200

250

300

350

400

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

A
tt

ac
k

C
o

u
n

t

General Effectiveness

Avg. Attack Count Trendline

62

57.29%, respectively, near the bottom of all agents. The only agent which performed

worse was covering_pb_lue at 56.96%. These low scores are not surprising because these

agents have very predictable patterns of movement.

63

Figure 30 - General Effectiveness Against the Statistical Adversary (Within 98% of Maximum)

92.56%
92.54%
92.54%
92.51%
92.49%
92.47%
92.47%
92.47%
92.46%
92.46%

92.41%
92.35%

92.28%
92.26%
92.24%
92.21%

92.15%
92.10%
92.09%
92.06%
92.06%
92.06%
92.03%
92.03%
92.03%
92.00%
92.00%
91.98%
91.97%
91.96%
91.95%

91.90%
91.90%
91.89%
91.89%
91.88%

91.83%
91.83%
91.81%
91.78%
91.77%
91.77%
91.75%
91.75%
91.74%

91.68%
91.66%
91.63%

91.59%
91.58%

91.44%

90.0% 90.5% 91.0% 91.5% 92.0% 92.5% 93.0%

covering_sl-edge_hl_pb_rnd

covering_sl-edge_pb_hl_sl-vertex_rnd

covering_pb_sl-edge_sl-vertex_hl_rnd

covering_pb_sl-edge_hl_sl-vertex_rnd

covering_sl-edge_sl-vertex_hl_rnd

covering_sl-edge_sl-vertex_pb_hl_rnd

covering_sl-edge_pb_sl-vertex_hl_rnd

covering_pb_sl-edge_hl_rnd

covering_pb_sl-edge_rnd

covering_sl-edge_pb_rnd

covering_hl_rnd

covering_sl-edge_rnd

covering_hl_sl-edge_sl-vertex_pb_rnd

covering_sl-edge_pb_sl-vertex_rnd

covering_hl_sl-edge_sl-vertex_rnd

covering_hl_sl-vertex_sl-edge_rnd

covering_hl_sl-vertex_sl-edge_pb_rnd

covering_hl_sl-edge_pb_sl-vertex_rnd

covering_pb_hl_sl-vertex_rnd

covering_hl_pb_sl-edge_sl-vertex_rnd

covering_hl_pb_rnd

covering_pb_hl_sl-vertex_sl-edge_rnd

covering_sl-vertex_pb_hl_sl-edge_rnd

covering_sl-vertex_hl_sl-edge_pb_rnd

covering_pb_sl-vertex_hl_sl-edge_rnd

covering_sl-vertex_pb_hl_rnd

General Effectiveness

A
ge

n
ts

64

Against the Hybrid Adversary Strategy

The general effectiveness scores against the hybrid adversary vary from 25.07% to

83.81 and are inversely correlated with patrol effectiveness (Figure 31). General

effectiveness is correlated with the attack count; agents that evoke the adversaries to

attack more have higher scores of general effectiveness (Figure 32).

Figure 31 - Effectiveness Range against the Hybrid Adversary

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Avg. General Effectiveness Avg. Defense Effectiveness

Avg. Patrol Effectiveness Avg. Deterance Effectiveness

65

Figure 32 - General Effectiveness and Attack Count against the Hybrid Adversary

The simplest and highest performing agent as measured by general effectiveness is

covering_hl_pb_rnd at 83.48%, which is within 99.6% of the maximum score of

covering_hl_pb_sl-vertex-rnd at 83.81% (Figure 33).

0

1,000

2,000

3,000

4,000

5,000

6,000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

A
tt

ac
k

C
o

u
n

t

G
en

er
al

 E
ff

ec
ti

ve
n

es
s

Avg. General Effectiveness Avg. Attack Count

66

Figure 33 - General Effectiveness Against the Hybrid Adversary (Within 98% of Maximum)

83.81%

83.80%

83.67%

83.65%

83.57%

83.57%

83.52%

83.49%

83.48%

83.48%

83.48%

83.46%

83.40%

83.32%

82.86%

82.84%

82.84%

82.80%

82.78%

82.77%

82.70%

82.68%

82.64%

82.63%

82.60%

82.59%

82.59%

82.58%

82.53%

82.48%

82.47%

82.46%

82.44%

82.43%

82.43%

82.43%

82.40%

82.39%

82.31%

82.21%

82.14%

82.13%

81.0% 81.5% 82.0% 82.5% 83.0% 83.5% 84.0%

covering_hl_pb_sl-vertex_rnd

covering_hl_sl-vertex_pb_sl-edge_rnd

covering_hl_sl-edge_pb_rnd

covering_hl_pb_sl-edge_sl-vertex_rnd

covering_sl-vertex_hl_pb_sl-edge_rnd

covering_hl_pb_sl-edge_rnd

covering_hl_sl-edge_sl-vertex_pb_rnd

covering_hl_sl-edge_pb_sl-vertex_rnd

covering_sl-vertex_hl_pb_rnd

covering_sl-vertex_hl_sl-edge_pb_rnd

covering_hl_pb_rnd

covering_hl_pb_sl-vertex_sl-edge_rnd

covering_hl_sl-vertex_pb_rnd

covering_hl_sl-vertex_sl-edge_pb_rnd

covering_hl_sl-edge_pb_sl-vertex_plue

covering_hl_sl-edge_pb_plue

covering_hl_pb_sl-vertex_plue

covering_sl-vertex_hl_sl-edge_pb_plue

covering_hl_pb_sl-edge_sl-vertex_plue

covering_hl_sl-vertex_pb_sl-edge_plue

covering_hl_pb_sl-edge_plue

covering_hl_pb_sl-vertex_sl-edge_plue

covering_hl_sl-vertex_sl-edge_pb_plue

covering_pb_hl_sl-edge_rnd

covering_pb_hl_sl-vertex_sl-edge_rnd

covering_hl_sl-edge_sl-vertex_pb_plue

covering_hl_pb_plue

covering_sl-vertex_hl_rnd

covering_sl-vertex_hl_pb_plue

covering_sl-vertex_hl_sl-edge_rnd

covering_hl_sl-vertex_pb_plue

covering_sl-vertex_hl_pb_sl-edge_plue

covering_hl_sl-edge_rnd

covering_pb_sl-vertex_hl_sl-edge_rnd

covering_pb_sl-vertex_hl_rnd

covering_pb_hl_sl-vertex_rnd

covering_sl-vertex_pb_hl_rnd

covering_pb_hl_rnd

covering_hl_rnd

covering_pb_hl_sl-edge_sl-vertex_rnd

covering_hl_sl-vertex_plue

covering_hl_sl-vertex_rnd

General Effectiveness

A
ge

n
ts

67

Chapter 5.

Conclusions, Recommendations, and Summary

Conclusions

Overall

The top performing covering agent strategies were covering_hl_lue,

covering_hl_pb_rnd, and covering_hl_rnd. The most effective agent against the random

adversary was covering_hl_lue, against the statistical adversary is was covering_hl_rnd,

and covering_hl_pb_rnd performed best against the waiting and hybrid strategies as well

as best overall (Table 3).

Adversary Agent Name Agent Description General Effectiveness

Random covering_hl_lue Hard-Limit, Least-Recently-Used- Edge 69.00%

Waiting covering_hl_pb_rnd Hard-Limit, Peek-back, Random 94.06%

Statistical covering_hl_rnd Hard-Limit, Random 92.06%

Hybrid covering_hl_pb_rnd Hard-Limit, Peek-Back, Random 83.48%

Overall covering_hl_pb_rnd Hard-Limit, Peek-Back, Random 82.20%

Table 3 - Top Performing Covering Agents

The top agent strategies do not employ all edge choosing primitives: only

combinations of hard-limit, peek-back, least-recently-used-edge, and random were used

by the top scoring agents. This means that the two soft-limit edge choosers, the vertex

and the edge focused ones, in addition to the probabilistic-recently-used-edge primitive,

were not a key factor for maximizing agent performance, as measured by general

effectiveness. As described in Table 4, the hard-limit primitive was effective against all

adversaries, the peek-back primitive was effective against the waiting and hybrid

68

strategy, and the random primitive was effective against waiting, statistical, and hybrid

adversaries.

H
a
rd

 L
im

it
 (

h
l)

P
ee

k-
B

a
ck

 (
p
b
)

L
ea

st
 R

ec
en

tl
y

U
se

d
 E

d
g

e
(l

u
e)

R
a
n
d
o
m

 (
rn

d
)

covering_hl_lue (Against Random) X X

covering_hl_pb_rnd (Against Waiting & Hybrid) X X X

covering_hl_rnd (Against Statistical) X X

Table 4 - Edge Choosing Primitive Usage in Top Covering Agents

When the results of all experiment variables are averaged, the top performing agent

was covering_hl_pb_rnd with a general effectiveness of 83.20%, which is also the best

agent for the hybrid adversary (Figure 34). Closely following that are the

covering_hl_rnd and covering_hl_lue agents, with general effectiveness scores of

81.32% and 77.20%, respectively. The control agents scored below those and the basic

covering agents scored even lower. Basic covering agents with only a single terminal

edge choosing primitive perform worse than their corresponding control agents; the

covering edge choosing agents only show high performance when used with multiple

primitives.

69

Figure 34 - Overall General Effectiveness of Control, Basic Covering, and top Covering Agents

49.98%

37.08%

35.85%

39.99%

25.05%

28.63%

77.20%

83.20%

81.32%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

control_lue

control_plue

control_rnd

covering_lue

covering_plue

covering_rnd

covering_hl_lue

covering_hl_pb_rnd

covering_hl_rnd

General Effectiveness

70

Figure 35 - General Effectiveness of Control, Basic Covering, and top Covering Agents against Adversaries

By Adversary

The control_lue agent shows roughly equal performance against all four adversaries,

while the control_plue and control_rnd performed much better against the statistical

adversary, less well on the hybrid strategy, and not well against the random and waiting

adversaries (Figure 36). The basic covering agents (Figure 37) have a similar result, but

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Random

Waiting

Statistical

Hybrid

control_lue control_plue control_rnd

covering_lue covering_plue covering_rnd

covering_hl_lue covering_hl_pb_rnd covering_hl_rnd

71

with lower scores of general effectiveness, a less equal performance of the covering_lue

agent against all adversaries, and near zero scores of general effectiveness of the

covering_plue and covering_rnd agents against the random and waiting adversaries.

Figure 36 - General Effectiveness of Control Agents Against all Adversaries

0%

25%

50%

75%

100%

Random

Waiting

Statistical

Hybrid

control_lue control_plue control_rnd

72

Figure 37 - General Effectiveness of Basic Covering Agents Against all Adversaries

In contrast, as can be seen in Figure 38, the top performing covering agents perform

equally well against all adversaries. One notable difference is that covering_hl_lue agents

performs worse against the statistical adversary in comparison to the covering_hl_pb_rnd

and covering_hl_rnd agents. This is not surprising because the covering_hl_lue agent

moves about the graph predictably while the other two agents do not.

0%

25%

50%

75%

100%

Random

Waiting

Statistical

Hybrid

covering_lue covering_plue covering_rnd

73

Figure 38 - General Effectiveness of Top Covering Agents Against all Adversaries

By Graph

To analyze the effect that graphs have on agent performance, the results from each

game were grouped by graph and the general effectiveness against all adversaries were

averaged. The analysis of the agents for the graphs are grouped into three categories:

control agents, basic covering agents, and the top performing covering agents. The

analysis shows that the top performing covering agents have both higher scores of

general effectiveness as well are more consistent performance for all the graphs.

When comparing the general effectiveness of the control agents, the control_plue

and control_rnd agents perform about equally no matter graph is used (Figure 39).

0%

25%

50%

75%

100%

Random

Waiting

Statistical

Hybrid

covering_hl_lue covering_hl_pb_rnd covering_hl_rnd

74

However, the control_lue performs much better on the corridor graph than the others; it

also tends to outperform the other control agents on all graphs except for graph A.

Figure 39 - Control Agent General Effectiveness by Graph

The basic covering agent strategies have the same general result, but with lower

general effectiveness scores overall and a lower score specifically in the “Grid” graph

(Figure 40). Thus, the control agent strategies perform better than the basic control

agents, overall, regardless of the graph. Thus, there is a cost for the more complex

behavior of the covering agents. However, it will be shown next that this cost is

recovered and the general effectiveness scores are greatly increased when certain

combinations of ECPs are used.

A, 37%

B, 51%

Circle, 52%

Corridor, 71%

Grid, 45%

Islands, 44%

0%

25%

50%

75%

100%
A

B

Circle

Corridor

Grid

Islands

control_lue control_plue control_rnd

75

Figure 40 - Basic Covering Agent General Effectiveness by Graph

The top performing covering agents have a very different performance characteristic

than the control and basic covering agent strategies; they show very uniform and much

improved performance no matter which graph is being used (Figure 41). One slight

deviation is that the covering_hl_lue agent underperforms in the “A” graph (and to lesser

extend the Islands, B, and Grid graphs) than the covering_hl_pb_rnd and

covering_hl_rnd do. As a whole, though, these top performing covering agents handle

each of the graphs extremely well, much better than the control and basic covering agent

strategies.

A, 19%
B, 41%

Circle, 49%

Corridor, 70%

Grid, 28%

Islands, 32%

0%

25%

50%

75%

100%
A

B

Circle

Corridor

Grid

Islands

covering_lue covering_plue covering_rnd

76

Figure 41 - Top Covering Agent General Effectiveness by Graph

Recommendations

Limitations

There are three major limitations in this work. The first limitation is that only four

adversaries (random, waiting, statistical, and hybrid) were used. While the random,

waiting, and statistical adversaries have their provenance in previous research (Sak,

Wainer, & Goldenstein, 2008), other adversaries are possible that are more sophisticated

than the random, waiting, statistical, and hybrid adversaries. The effectiveness of the

proposed agent strategies against other adversary types has not been considered here.

The second limitation is that other ECPs could be designed that perform better than

the ones used in this work. Each ECP of this work have low time and space requirements,

0%

25%

50%

75%

100%

A

B

Circle

Corridor

Grid

Islands

covering_hl_lue covering_hl_pb_rnd covering_hl_rnd

77

basically linearly as a function of either the number of edges or critical vertices. Thus,

these ECPs execute efficiently in terms of time and space. It is feasible that other ECPs

could be designed that perform better though they may be less efficient. An example may

be an ECP that uses neural networks to monitor their target vertex and learn when the

most optimal time to attack is.

The third limitation is the graphs. While the graphs are from previous research

related to this problem (Almeida, et al., 2004), it is not well understood how agent

performance depends on graph topology generally. The experiments have been limited to

these select graphs. Questions of dependence of strategy effectiveness on graph topology

has only been touched upon.

Problem Variations

 A potential variation of the problem is to limit the agents’ knowledge of the attack

interval, K. In this work, the fixed attack interval was known to the agents. Instead, the

attack interval would be given to the agents as a range as possible values, where each

adversary’s attack interval lies within this range (the present research considers the trivial

range [K, K]). The attack interval for an adversary 𝑎 is 𝐾(𝑎) ∈ [𝐾𝑙𝑜𝑤, 𝐾ℎ𝑖𝑔ℎ], where 𝐾𝑙𝑜𝑤

and 𝐾ℎ𝑖𝑔ℎ are fixed values that the agents know (they are experimental settings). Hence

the agent does not know exactly how long it has before a targeted vertex will be

compromised, though this time period is constrained. In all the agent designs in this

work, a notion of a return-to-vertex deadline was used to inform the agent when it should

return to a vertex to minimize successful attacks on it. In some agents this is a hard

deadline while in others it is soft. In either case, the agent is not sure of which timestep it

must return to a critical vertex to thwart an attack on it.

78

When a hard deadline is required, such as against the waiting adversary, the agent

must return to the vertex at the lower bound of the range, to be certain that an attack is

thwarted. However, doing so will not give the agent any information regarding the attack

interval 𝐾(𝑎) for adversary a. Instead, the agent maintains a range [𝐾𝑙𝑜𝑤(𝑎), 𝐾ℎ𝑖𝑔ℎ(𝑎)]

for each adversary a that it covers and may use strategies to narrow this range. As it does

so, it can hone itself to better protect the vertices of each adversary. This approach will

cause at least one attack to succeed; the agent should find just one critical vertex and play

this game against it alone until the value of K is known. After that, the agent can explore

the graph and find other critical vertices. However, this approach is not as simple as it

may seem because agents cannot stay on a vertex for succeeding time steps, an incident

edge must always be chosen. Thus, the agent strategy must account for the edge weights

to know the actual durations it may be away from a critical vertex. So, playing this game

against a single adversary on a particular critical vertex will not necessarily make K

known. It would, however, allow the range of values of K to be reduced in length after

succeeding games against multiple adversaries at their critical vertices. Because no ECPs

which used the soft deadline were used by the top performing agents, the implementation

with soft deadlines will not be considered.

Another problem variation is to further restrict the amount of communication

between the agents. In this work, the only information that is shared between the agents

are the critical vertices. This could be removed and replaced with a flag that an agent can

leave at a critical vertex, which other agents take note of when arriving at that vertex.

Thus, agents could only learn of new critical vertices by visiting a vertex and checking

the flag. In practical terms, the original problem statement could be thought of each agent

79

broadcasting the critical vertices it has discovered by using electromagnetic emissions

that are received by all agents as soon as a critical vertex is discovered. However, the

assumption that this is possible in real world situations is not necessarily valid. Thus, in

its place, physical markers could be left at vertices by the agents as they travel to them.

The basic effect on the agents is the same, the agents learn of the critical vertices over

time, but the rate at which they learn the critical vertices happens more slowly instead of

instantaneously. This could have applications in practical scenarios such as when the

graph is a computer network or a location where electromagnetic propagation is severely

limited.

A problem variation in the other direction than above is for agents to know the graph

topology from the start as well as which vertex each agent is at for each timestep.

However, no other information is shared such as the critical vertex set or any intentions

of the other agents. Thus, the agents would not directly know which vertices are critical

or covered by other agents, such as in this work. Instead, this information would have to

be inferred by the agents, such as by monitoring the behavior of other agents. The agents

could also patrol the graph to thwart attacks and gain direct knowledge of which vertices

are critical and apply this knowledge to their inferences. It is interesting to consider that

the agents would monitor each other to infer each other’s state and intentions and to

cooperate effectively from the inferred knowledge.

Summary

This work on the domain of multi-agent adversarial patrol problems, which is

applicable to interesting practical applications, resulted in the creation of novel agent

strategies that outperform agent strategies of previous work. The information available to

80

the agents was purposely kept minimal, with the only shared information between them

being the critical vertices. The agents had very limited access to the environment to

reproduce the limited information that would be available to such agents in a practical

setting.

The goal of creating new heuristic agent strategies to counter each of the adversaries

was achieved. Additionally, a new universal (or general) agent strategy was designed and

found through experiments and analysis of results to be capable of countering all

adversary types in the graphs that were considered. The three research questions were

answered on how to develop effective agent strategies against each of the adversaries:

that a general agent strategy could indeed be created, how these agents perform under a

variety of conditions, and which agent strategies performed better and why.

The methodology was derived directly from the research goals and questions,

resulting in the design of three adversary strategies as well as a fourth that is hybrid of

those three. This hybrid strategy is a new approach that drives more sophisticated agent

strategy design. The problem formulation resulted in an approach to agent design that is

based on a new chained component architecture, resulting in almost 200 new agent

strategies by permutations of these components. Additionally, the new concept of agent

critical vertex covering was introduced and designed into each of these new agent

strategies. This covering capability allows the agent strategies to maximize protection of

critical vertices while also maximizing patrolling for other vertices subject to attack in an

efficient and emergent manner.

The experiment design was created with inspiration from previous research in this

problem domain, to provide a clear lineage of the significance of this work. New

81

performance metrics were created that provide better insight into the nature of an agent’s

functioning under a very wide range of experiment scenarios. The wide range of

experiment scenarios were broken down into sub-categories that enabled the results to be

evaluated from many different viewpoints to provide insight under what conditions an

agent does or does not perform well. To produce these results, millions of simulations

were run, with each simulation having a duration of approximately tens of thousands of

timesteps. The experiment took approximately 4 days to run a 32-core CPU machine; the

experiment software was designed to execute in a highly parallel manner.

Three categories of agent strategies were created: control, basic covering, and

chained covering. The three control agent strategies were designed to counter the random,

waiting, and statistical adversaries. The three basic covering strategies use critical vertex

covering and consist of only a single terminal ECP; each basic covering agent designed to

counter the random, waiting, and statistical adversaries. However, the basic covering

strategies did perform as well as the control strategies. It appears that adding critical

vertex covering with only a single terminal ECP shows no advantage and in fact is

detrimental. Lastly, the almost 200 chained covering agent strategies, each one a

permutation of all possible ECP combinations.

Three of the chained covering agent strategies were notable as outperforming all

others under all experimental variables. One of them was superior too all other agent

strategies, including the control and basic covering ones. That agent strategy was

covering_hl_pb_rnd, which is the chain of the following ECPs, in order: Hard-Limit,

Peek-Back, and Random. This agent outperformed all other agents under the performance

measures. It also performed roughly equally well no matter which adversary, graph, or

82

other experiment variables change. Thus, this agent strategy appears to be universal and

consistently performant in all situations.

83

Appendix A

General Agent Strategy

The General Agent strategy of this work was the agent composition of ECPs that

outperformed all other agent strategies in terms of general effectiveness. This agent uses

vertex covering to assign each critical vertex to exactly one agent. Each agent takes sole

responsibility for protecting its own critical vertices and avoids the critical vertices of

other agents. The General Agent Strategy is composed of a chain with the following

ECPs, in order: Hard-Limit, Peek-Back, and Random. This particular combination of

ECPs (in this specific order) performs the best against all the adversaries: random,

waiting, statistical, and hybrid. When this agent arrives at a vertex and must choose an

incident edge to travel to next, it first asks the Hard-Limit ECP to choose an edge. If the

Hard-Limit ECP declines to choose an edge, the Peek-Back ECP is then asked to choose

an edge. If it also declines to choose an edge, the Random ECP will always choose an

edge. The combination of these three ECPs performed the best among all other

permutations of ECPs. Each ECP will be given a brief description, below.

The Hard-Limit ECP will only choose an edge if it heuristically determines that it

must immediately begin travelling back to a covered vertex to reach it before K timesteps

have elapsed since last leaving it. If that situation occurs, the ECP will pick the edge that

will cause the agent to return to vertex the quickest. If there are multiple vertices that fit

the criteria, it will pick the vertex that it can reach the soonest. If the criteria are not met,

the Peek-Back ECP follows.

The Peek-Back ECP will check every vertex once by departing it along an incident

edge and then, after arriving at the other vertex, immediately return back to the original

84

vertex along the same edge. It does this to catch a waiting adversary in the act of

attacking the vertex after leaving it. Once a vertex has been checked, it is never checked

again and so if the agent travels to a checked vertex again in the future, the Random ECP

follows.

The Random ECP randomly picks an incident edge of the current vertex. However, it

will avoid choosing an edge whose endpoint it knows to be a covered vertex of another

agent. In the case where all incident edges have endpoints that go to a covered vertex of

another agent, this ECP will choose one of them randomly.

85

References

Acevedo, J. J., Arrue, B. C., Maza, I., & Ollero, A. (2013). Cooperative Large Area

Surveillance with a Team of Aerial Mobile Robots for Long Endurance Missions.

Journal of Intelligent & Robotic Systems, 70(1), 329-345. doi:10.1007/s10846-

012-9716-3

Agmon, N. (2010). On Events in Multi-Robot Patrol in Adversarial Environments

Categories and Subject Descriptors. Proc. of 9th Int. Conf. on Autonomous Agents

and Multiagent Systems (AAMAS 2010). 2, pp. 591-598. Toronto, Canada:

International Foundation for Autonomous Agents and Multiagent Systems.

Agmon, N., Kaminka, G. A., & Kraus, S. (2011). Multi-Robot Adversarial Patrolling:

Facing a Full-Knowledge Opponent. Journal of Artificial Intelligence Research,

42, 887-916. doi:10.1613/jair.3365

Agmon, N., Kraus, S., & Kaminka, G. A. (2008). Multi-Robot Perimeter Patrol in

Adversarial Settings. Robotics and Automation, 2008. ICRA 2008. IEEE

International Conference on (pp. 2339–2345). Pasadena, CA: IEEE Computer

Society. doi:10.1109/ROBOT.2008.4543563

Agmon, N., Kraus, S., & Kaminka, G. A. (2009). Uncertainties in Adversarial Patrol.

AAMAS '09 Proceedings of The 8th International Conference on Autonomous

Agents and Multiagent Systems. 2, pp. 1267-1268. Budapest, Hungary:

International Foundation for Autonomous Agents and Multiagent Systems.

Agmon, N., Kraus, S., Kaminka, G. A., & Sadov, V. (2009). Adversarial Uncertainty in

Multi-Robot Patrol. International Joint Conference on Artificial Intelligence, (pp.

1811-1817).

Agmon, N., Sadov, V., Kaminka, G. A., & Kraus, S. (2008). The Impact of Adversarial

Knowledge on Adversarial Planning in Perimeter Patrol. AAMAS '08 Proceedings

of the 7th international joint conference on Autonomous agents and multiagent

systems. 1, pp. 55-62. Estoril, Portugal: International Foundation for Autonomous

Agents and Multiagent Systems.

Alam, T., Edwards, M., Bobadilla, L., & Shell, D. (2015). Distributed Multi-Robot Area

Patrolling in Adversarial Environments. International Workshop on Robotic

Sensor Networks. Seattle, WA.

Almeida, A., Ramalho, G., Santana, H., Tedesco, P., Menezes, T., Corruble, V., &

Chevaleyre, Y. (2004). Recent Advances on Multi-agent Patrolling. In Advances

in Artificial Intelligence - SBIA 2004 (pp. 474-483). Springer. doi:10.1007/978-3-

540-28645-5_48

86

Amigoni, F., Basilico, N., & Gatti, N. (2009). Finding the Optimal Strategies for Robotic

Patrolling with Adversaries in Topologically-represented Environments. Robotics

and Automation, 2009. ICRA '09. IEEE International Conference on (pp. 819-

824). Kobe: IEEE. doi:10.1109/ROBOT.2009.5152497

Amigoni, F., Gatti, N., & Ippedico, A. (2008). A Game-Theoretic Approach to

Determining Efficient Patrolling Strategies for Mobile Robots. Web Intelligence

and Intelligent Agent Technology, IEEE/WIC/ACM International Conference on,

Web Intelligence and Intelligent Agent Technology, IEEE/WIC/ACM

International Conference on 2008 (pp. 500-503). IEEE.

doi:10.1109/WIIAT.2008.324

Basilico, N., Gatti, N., & Amigoni, F. (2009). Developing a Deterministic Patrolling

Strategy for Security Agents. WI-IAT '09 Proceedings of the 2009

IEEE/WIC/ACM International Joint Conference on Web Intelligence and

Intelligent Agent Technology. 2, pp. 565-572. IEEE. doi:10.1109/WI-

IAT.2009.212

Basilico, N., Gatti, N., & Rossi, T. (2009). Capturing Augmented Sensing Capabilities

and Intrusion Delay in Patrolling-intrusion Games. CIG2009 - 2009 IEEE

Symposium on Computational Intelligence and Games (pp. 186-193). Milano:

IEEE. doi:10.1109/CIG.2009.5286477

Basilico, N., Gatti, N., Rossi, T., Ceppi, S., & Amigoni, F. (2009). Extending Algorithms

for Mobile Robot Patrolling in the Presence of Adversaries to More Realistic

Settings. WI-IAT '09 Proceedings of the 2009 IEEE/WIC/ACM International Joint

Conference on Web Intelligence and Intelligent Agent Technology. 2, pp. 557-

564. IEEE. doi:10.1109/WI-IAT.2009.211

Chevaleyre, Y. (2004). Theoretical Analysis of the Multi-Agent Patrolling Problem.

Intelligent Agent Technology, 2004. (IAT 2004). Proceedings. IEEE/WIC/ACM

International Conference on (pp. 302-308). Beijing: IEEE.

doi:10.1109/IAT.2004.1342959

Chevaleyre, Y., Sempe, F., & Ramalho, G. (2004). A Theoretical Analysis of Multi-

Agent Patrolling Strategies. Proceeding AAMAS '04 Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent Systems -

Volume 3 (pp. 1524-1525). New York, New York, USA: IEEE.

doi:10.1109/AAMAS.2004.34

Conitzer, V., & Sandholm, T. (2006). Computing the Optimal Strategy to Commit to.

Proceedings of the 7th ACM conference on Electronic commerce - EC '06, (pp.

82-90). doi:10.1145/1134707.1134717

87

Dorigo, M., & Gambardella, L. M. (1997, April). Ant Colony System: A Cooperative

Learning Approach to the Traveling Salesman Problem. IEEE Transactions on

Evolutionary Computation, 1(1), 53-66. doi:10.1109/4235.585892

Flint, M., Polycarpou, M., & Fernandez-Gaucherand, E. (2002). Cooperative Control for

Multiple Autonomous UAV's Searching for Targets. Decision and Control, 2002,

Proceedings of the 41st IEEE Conference on. 3, pp. 2823-2828. Las Vegas, NV,

USA: IEEE. doi:10.1109/CDC.2002.1184272

Franco, C., López-Nicolás, G., Sagüés, C., & Llorente, S. (2015). Adaptive Action for

Multi-Agent Persistent Coverage. Asian Journal of Control, 18(2), 419-432.

doi:10.1002/asjc.1152

Glad, A., Simonon, O., Buffet, O., & Charpillet, F. (2008). Theoretical Study of Ant-

Based Algorithms for Multi-Agent Patrolling. 18th European Conference on

Artificial Intelligence including Prestigious Applications of Intelligent Systems

(PAIS 2008) (pp. 626-630). Patras, Greece: IOS press. doi:10.3233/978-1-58603-

891-5-626

Grace, J., & Baillieul, J. (2005). Stochastic Strategies for Autonomous Robotic

Surveillance. Decision and Control, 2005 and 2005 European Control

Conference. CDC-ECC '05. 44th IEEE Conference on (pp. 2200-2205). Seville,

Spain: IEEE. doi:10.1109/CDC.2005.1582488

Hespanha, J. P., Kim, H. J., & Sastry, S. (1999). Multiple-Agent Probabilistic Pursuit-

Evasion Games. Decision and Control, 1999. Proceedings of the 38th IEEE

Conference on. 3, pp. 2432-2437. Phoenix, AZ: IEEE.

doi:10.1109/CDC.1999.831290

Iocchi, L., Marchetti, L., & Nardi, D. (2011). Multi-robot patrolling with coordinated

behaviours in realistic environments. IEEE International Conference on

Intelligent Robots and Systems, (pp. 2796-2801).

doi:10.1109/IROS.2011.6048424

Machado, A., Ramalho, G., Zucker, J.-D., & Drogoul, A. (2002). Multi-Agent Patrolling:

An Empirical Analysis of Alternative Architectures. 3rd International Conference

on Multi-agent-based simulation II (MABS) (pp. 155-170). Bologna, Italy:

Springer. doi:10.1007/3-540-36483-8_11

Megiddo, N., Hakimi, S. L., Garey, M. R., Johnson, D. S., & Papadimitriou, C. H. (1988,

January). The Complexity of Searching a Graph. Journal of the ACM, 35(1), 18-

44. doi:10.1145/42267.42268

88

Park, C.-H., Kim, Y.-D., & Jeong, B. (2012). Heuristics for Determining a Patrol Path of

an Unmanned Combat Vehicle. Computers & Industrial Engineering, 63(1), 150-

160. doi:10.1016/j.cie.2012.02.007

Parsons, T. D. (1976). Pursuit-Evasion in a Graph. In Y. Alavi, & D. R. Lick (Eds.),

Theory and Applications of Graphs (Vol. 642, pp. 426-441). Michigan: Springer

Berlin Heidelberg. doi:10.1007/BFb0070400

Paruchuri, P., Pearce, J. P., Tambe, M., Ordonez, F., & Kraus, S. (2007). An Efficient

Heuristic Approach for Security Against Multiple Adversaries. AAMAS '07

Proceedings of the 6th international joint conference on Autonomous agents and

multiagent systems. Honolulu, Hawaii: ACM. doi:10.1145/1329125.1329344

Paruchuri, P., Tambe, M., Ordóñez, F., & Kraus, S. (2006). Security in Multiagent

Systems by Policy Randomization. Proceedings of the Fifth International Joint

Conference on Autonomous Agents and Multiagent Systems (pp. 273-280).

Hakodate, Japan: ACM. doi:10.1145/1160633.1160681

Pasqualetti, F., Durham, J. W., & Bullo, F. (2012). Cooperative Patrolling via Weighted

Tours: Performance Analysis and Distributed Algorithms. IEEE Transactions on

Robotics, 28(5), 1181-1188. doi:10.1109/TRO.2012.2201293

Portugal, D., & Rocha, R. P. (2013). Multi-Robot Patrolling Algorithms: Examining

Performance and Scalability. Advanced Robotics, 27(5), 325-336.

doi:10.1080/01691864.2013.763722

Praveen, P., Pearce, J. P., Tambe, M., Ordóñez, F., & Kraus, S. (2007). An Efficient

Heuristic Approach for Security Against Multiple Adversaries. AAMAS '07

Proceedings of the 6th international joint conference on Autonomous agents and

multiagent systems. Honolulu, Hawaii: ACM. doi:10.1145/1329125.1329344

Sak, T., Wainer, J., & Goldenstein, S. K. (2008). Probabilistic Multiagent Patrolling.

Advances in Artificial Intelligence - SBIA - 19th Brazilian Symposium on

Artificial Intelligence (pp. 124-133). Savador, Brazil: Springer Berlin Heidelberg.

doi:10.1007/978-3-540-88190-2_18

Sampaio, P. A., Ramalho, G., & Tedesco, P. (2010). The Gravitational Strategy for the

Timed Patrolling. Tools with Artificial Intelligence (ICTAI), 2010 22nd IEEE

International Conference on. 1, pp. 113-120. IEEE. doi:10.1109/ICTAI.2010.24

Santana, H., Ramalho, G., Corruble, V., & Ratitch, B. (2004). Multi-Agent Patrolling

with Reinforcement Learning. Proceeding AAMAS '04 Proceedings of the Third

International Joint Conference on Autonomous Agents and Multiagent Systems. 3,

89

pp. 1122-1129. New York, NY, USA: IEEE Computer Society.

doi:10.1109/AAMAS.2004.180

Subramanian, S. K., & Cruz, J. B. (2003). Adaptive Models of Pop-up Threats for Multi-

agent persistent Area Denial. Decision and Control, 2003. Proceedings. 42nd

IEEE Conference on. 1, pp. 510-515. Maui, HI, USA: IEEE.

doi:10.1109/CDC.2003.1272614

Yan, C., & Zhang, T. (2016). Multi-robot patrol: A distributed algorithm based on

expected idleness. International Journal of Advanced Robotic Systems, 13(6).

doi:10.1177/1729881416663666

	Nova Southeastern University
	NSUWorks
	2018

	Semi-Informed Multi-Agent Patrol Strategies
	Chad E. Hardin
	Share Feedback About This Item
	NSUWorks Citation

	tmp.1527177305.pdf.Ngfb4

