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Abstract 

The adversarial multi-agent patrol problem is an active research topic with many real-

world applications such as physical robots guarding an area and software agents 

protecting a computer network. In it, agents patrol a graph looking for so-called critical 

vertices that are subject to attack by adversaries. The agents are unaware of which 

vertices are subject to attack by adversaries and when they encounter such a vertex they 

attempt to protect it from being compromised (an adversary must occupy the vertex it 

targets a certain amount of time for the attack to succeed). Even though the terms 

adversary and attack are used, the problem domain extends to patrolling a graph for other 

interesting noncompetitive contexts such as search and rescue. 

 

The problem statement adopted in this work is formulated such that agents obtain 

knowledge of local graph topology and critical vertices over the course of their travels via 

an API ; there is no global knowledge of the graph or communication between agents. 

The challenge is to balance exploration, necessary to discover critical vertices, with 

exploitation, necessary to protect critical vertices from attack. 

 

Four types of adversaries were used for experiments, three from previous research – 

waiting, random, and statistical - and the fourth, a hybrid of those three. Agent strategies 

for countering each of these adversaries are designed and evaluated. Benchmark graphs 

and parameter settings from related research will be employed. The proposed research 

culminates in the design and evaluation of agents to counter these various types of 

adversaries under a range of conditions. 

 

The results of this work are agent strategies in which each agent becomes solely 

responsible for protecting those critical vertices it discovers. The agents use emergent 

behavior to minimize successful attacks and maximize the discovery of new critical 

vertices. A set of seven edge choosing primitives (ECPs) are defined that are combined in 

different ways to yield a range of agent strategies using the chain of responsibility OOP 

design pattern. Every permutation of them were tested and measured in order to identify 

those strategies that perform well. One strategy performed particularly well against all 

adversaries, graph topology, and other experimental variables. This particular strategy 

combines ECPs of: A hard-deadline return to covered vertices to counter the random 

adversary, efficiently checking vertices to see if they are being attacked by the waiting 

adversary, and random movement to impede the statistical adversary.  
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Chapter 1. 

Introduction 

Background 

In multi-agent adversarial patrol problems, agents patrol a graph whose vertices are 

subject to attack by a set of adversaries. In this problem, the number of vertices on the 

graph exceeds the number of agents and so the agents must have a strategy for effectively 

patrolling a large number of vertices with a limited ability to monitor all of them at any 

moment in time. Practical applications of this problem include physical and network 

security. An example of physical security would be robots protecting some area from 

intrusion by biological or robotic intruders, such as in a prison, storage complex, or 

military base. The problem can also be adapted to network security as mobile software 

agents inspecting computers on a network. The goal of the agents in that problem are to 

detect and prevent further intrusions or probes on locations that an adversary is attacking. 

Problem Statement 

The problem is how one or more agents that exist on a weighted undirected 

connected graph can best protect as many vertices as possible on that graph from one or 

more adversaries attempting to attack a proper subset of those vertices. The agents patrol 

the graph in an attempt to thwart the attacks of adversaries. Each adversary is assigned a 

single target vertex to observe and attack. The target vertices are not known by the 

agents in advance, though they may be discovered as attacks are thwarted. This problem 

is a version of the multi-agent patrol problem (Machado, Ramalho, Zucker, & Drogoul, 

2002). 
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In discrete timesteps, each agent and adversary can perform one action. An agent can 

either transition (or continue to transition) from one vertex along an edge to an adjacent 

vertex or remain on its current vertex. An adversary can either attack (or continue to 

attack) its target vertex, or not attack. Whether an adversary attacks or not, it is aware if 

an agent is occupying its target vertex.  

Each edge of the graph has an integer valued weight value w that denotes how many 

timesteps it will take an agent to transition from one of its endpoints to the other. While 

transitioning, the agent is occupying the edge and cannot make any further actions until it 

reaches the adjacent vertex a total of w timesteps later. 

An adversary attacks its target vertex by occupying it for K consecutive timesteps, 

where fixed integer K, known as the attack interval, is known to all agents and 

adversaries (Basilico, Gatti, & Amigoni, 2009). If an adversary’s target is visited by an 

agent during an attack, the attack is thwarted. On the other hand, if the adversary 

occupies its target vertex for K timesteps without being disrupted by the arrival of an 

agent, the attack is successful. Once an adversary begins an attack, it must occupy the 

vertex until its attack is either thwarted or successful.  

When an attack by an adversary is thwarted by the arrival of an agent to that vertex, 

the agent then knows that the vertex is an adversary’s target (i.e., subject to attack). The 

set of target vertices known by the agents is referred to as the critical vertices. Note that 

if an attack by an adversary on a target vertex is successful, the agents are unaware that 

the attacked vertex is a target and thus the vertex will not be added to the critical vertices 

set. Such a vertex is considered compromised (i.e., the adversary has won) and is no 

longer subject to subsequent attack. The critical vertices are available to all agents at the 
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timestep in which they are discovered. Adversaries do not have knowledge of the critical 

vertices and share no information; they operate independently from each other.  

When an attack is thwarted, its adversary ‘retreats’ but may attack this vertex (its 

target vertex) subsequently. An agent never knows if it has discovered all the target 

vertices and so must continue to patrol no matter how many critical vertices have been 

discovered. An agent’s strategy is a blend of protecting critical vertices and exploring the 

graph for other vertices that may be subject to attack.  

To decide what vertex to move to next, agents use a service interface, the agent API, 

from which it can obtain information in order to make its decision. The agents use this 

information to implement their strategies; they have no access to any other information, 

including the graph topology. The functions of the agent API are: 

• current_timestep() – Returns the number of timesteps that have elapsed. 

• attack_interval() – Returns the attack interval, K. 

• incident_edges() – Returns the set of edges incident to the vertex that the 

agent currently occupies. This is an opaque and unique integer and does 

not provide any other information, such as the destination vertex. 

However, it does identify the edge direction from the current vertex to the 

destination vertex. Each edge identifier has a reverse method on it to give 

the agent another edge identifier which will identify the same edge from 

the destination vertex to the current vertex. The result is that each edge has 

two identifiers, one for each direction. Agents can, under some strategies, 

learn graph topology as they move about the graph. 
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• critical_vertices() – Returns the set of vertices known to be critical (i.e. 

subject to attack). Note that if the agent’s current vertex is under attack 

and was just discovered to be critical, it will be returned in this set as well. 

• discovered_critical() – Returns true if the current vertex is critical for the 

first time, meaning that the agent thwarted an attack on it before any other 

agent did. 

• current_vertex() – Returns the vertex that the agent currently occupies. 

This is an opaque and unique integer and provides no further information 

about the vertex. 

• dist_to_critical_vertex(e, c) – Returns the shortest distance from the 

current vertex to critical vertex c along paths starting from edge e, where e 

is incident to the current vertex. 

There is an additional convenience function, best_dist_to_critical_vertex(c), which 

takes as input a critical vertex. Its purpose is to inform the agent which incident edge of 

its current vertex will get the agent to that critical vertex the fastest. This function only 

uses the previously mentioned API functions to ease agent development for this common 

use case. Internally, it calls dist_to_critical_vertex(e,c) for each incident edge and selects 

the edge with the shortest distance, returing it as part of a 2-tuple that also contains the 

distance. 

Each agent implements a decide method that returns its action on every timestep 

when it occupies a vertex (i.e. not transitioning on an edge). All agents execute the same 

strategy but have independent state. The method’s single input parameter is a reference to 

the agent API and its output is an optional edge to indicate movement to an adjacent edge 
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or not. If the agent strategy decides to stay at its current vertex, it simply does not return 

an edge. No other information is given to the agent’s strategy (e.g. the graph topology, 

the states of other agents, or which strategy the adversaries are using).  

Like agents, each adversary implements a decide method. This method has a boolean 

input indicating whether the target vertex is occupied by an agent and outputs the 

adversary’s action of whether to attack. The method is invoked on every timestep when it 

is not attacking. All adversaries execute the same strategy but have independent state. If 

an adversary decides to attack, the method is not invoked again until the attack has 

succeeded or been thwarted. The inputs to the decide method calls are the only 

information the adveraries receive, they do not share any information with each other and 

they are not aware of which strategy the agents are using.  

Agents and adversaries interact within a single run, which has an initial start state 

that defines it and then iterates over discrete timesteps where each agent and adversary 

may choose an action, as described in the above paragraphs. The start state is composed 

of the following constants: Graph topology and edge weights, attack interval K, number 

of agents and their strategy, number of adversaries and their strategy, initial agent 

locations, and the assignment of a target vertex for each adversary. All agents in each run 

adopt the same strategy, as do the adversaries. During the run, the conditions specified in 

the initial state do not change except for the the agent locations, critical vertices, and the 

states of individual agents and adversaries. 

All adversaries will adopt one of three strategies identified by (Sak, Wainer, & 

Goldenstein, 2008): random, waiting, and statistical. Under the random strategy, an 

adversary attacks its target vertex at random. Under the waiting strategy, an adversary 
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observes its target vertex and attacks at the timestep after an agent has left the vertex. 

This implies that any target vertex left unvisited for K timesteps will always be 

compromised. Lastly, under the statistical strategy, an adversary observes its target vertex 

over time to construct a statistical correlation of how long after an agent leaves a target 

vertex and an agent arrives at that same target vertex. The correlation yields a probability 

that the target vertex will remain unvisited for K timesteps based on the observed history. 

When the adversary determines that the probability exceeds a certain threshold value 

under a minimum predicted statistical error, it initiates the attack.  

Agent strategies compete with an adversary strategy with the goal of minimizing 

successful adversary attacks. Therefore, agent strategies must make their best effort to 

protect the critical vertices while also patrolling the graph to protect the unknown target 

vertices that may reside anywhere in the graph. To effectively patrol a graph with a 

limited number of agents against adversaries that are attempting to attack an unknown 

subset of vertices, the strategy employed by the agent is critical and worthy of research. 

Agent strategies that simply seek to uniformly cover the entire graph become susceptible 

to attack by adversaries that can predict their future movements throughout the graph. 

Therefore, agents should attempt to determine which vertices the adversaries are 

attempting to attack and then adjust their movement to protect them. These two opposing 

goals require agent strategies to strike a balance between protection and patrol. The 

experiment ends when every target vertex either has been compromised or has been 

discovered (i.e., added to the critical set). 
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Dissertation Goal 

The goal was to create new heuristic agent strategies to specifically counter each of 

the three identified adversary strategies. Each of the agent strategies were designed to 

perform well against only one of the adversary strategies yet will be tested against all the 

adversary strategies. Additional agent strategies were designed to perform well against all 

three adversary strategies. This goal addressed the problem by discovering new methods 

to counter adversaries and minimize successful attacks by adversaries of differing levels 

of complexity. 

Research Questions 

The first research question was how to develop effective agent strategies that 

specifically target one of the three adversarial strategies. Notably, results from this work 

on targeted strategies will inform the design of a strategy effective against all three 

adversarial strategies. 

The second research question was whether general agent strategies can be developed 

using ideas from existing strategies for solving related problems as well as new ideas. A 

general strategy would be one that performs equally well against any of the three 

adversaries. In other words, could a general agent strategy be designed that can 

effectively counter all three agent strategies. 

The third research question was how well the agent strategies perform when 

measured against each other, including new general strategies against non-general 

strategies. The measures for comparison were based their ability to protect target vertices 

while having the same constant computational complexity. Specifically, the general 

strategies have the same level of resource requirements as the non-general strategies. 
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The fourth research question was to determine under what conditions the new agent 

strategies perform better. In what ways do such conditions as agent density, graph size, 

graph connectedness, and edge lengths affect performance? Of interest was how the 

conditions influence the effectiveness of the new agent strategies. 

Relevance and Significance 

The problem of agents interacting on a graph was originally formulated in (Parsons, 

1976) as agents searching for other “lost” agents somewhere on a graph; this problem 

was termed pursuit-evasion. Later work determined how to calculate the minimum 

number of agents required to find and capture an adversary on a graph (Megiddo, 

Hakimi, Garey, Johnson, & Papadimitriou, 1988). The problem of agents defending 

against adversaries that can observe the agents to predict their movements and therefore 

exploit their predictability to successfully attack was explored and found that stochastic 

agent movements reduce the adversaries’ success (Grace & Baillieul, 2005). 

The problem of multi-agent patrolling was studied, resulting in a classification of 

many different variations of agent architectures, evaluation criteria, and experimental 

scenarios (Machado, Ramalho, Zucker, & Drogoul, 2002). However, the evaluation 

criteria were centered on a simple reduction of time that vertices are left unvisited; they 

did not consider the potential abilities of an adversary to predict and exploit predictable 

agent movements. An extension to that problem formulation took into consideration how 

an agent will perform against adversaries that can observe and exploit the agent’s 

decisions on vertex movement while patrolling (Sak, Wainer, & Goldenstein, 2008). This 

extension introduced a new variation of the problem, termed the probabilistic patrolling 

problem, by the creation of two new types of adversary strategies: waiting and statistical. 
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The multi-agent patrol problem was identified as a research topic and analyzed by 

(Machado, Ramalho, Zucker, & Drogoul, 2002). They formulated the problem, identified 

many types of agent strategies to solve the problem, and created the software needed to 

conduct experiments and collect empirical data. The problem was structured and 

simplified with an unweighted directed graph that agents move about on in discrete 

timesteps, where each vertex is equally important regarding patrol frequency. The criteria 

chosen to evaluate the performance of the different strategies were based on the concept 

of idleness and exploration time. Idleness is the amount of time a vertex is left unvisited 

by an agent. The three types of idleness of concern were the instantaneous graph 

idleness, the graph idleness, and the worst idleness. All three are defined in (Machado, 

Ramalho, Zucker, & Drogoul, 2002, p. 157) and their explanation follows: The 

instantaneous graph idleness is “the average instantaneous idleness of all nodes in a given 

cycle”, where cycle is synonymous with timestep; the graph idleness is “the average 

instantaneous graph idleness over n-cycle simulation”; and the worst idleness is “the 

biggest value of instantaneous node idleness occurred during the whole simulation”. 

Exploration time is “the number of cycles necessary to the agents to visit, at least once, 

all nodes of the graph” (Machado, Ramalho, Zucker, & Drogoul, 2002, pp. 157-158). 

Multi-agent patrol strategies that can solve the problem were identified by the 

definition of four criteria of the strategy: Reactive or cognitive, communication type, how 

the next node of traveling to is chosen, and a coordination strategy (Machado, Ramalho, 

Zucker, & Drogoul, 2002). Reactive agents make decisions based only upon information 

available from their current timestep and location while cognitive agents pursue a goal 

that is followed for multiple timesteps. Communication between agents can occur in three 
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types of ways: flags, blackboard, and messages. There are four categories of how the next 

node is chosen by an agent strategy, which are based on the two dimensions of the field of 

vision and choice method. The two fields of vision are local and global while the two 

choice methods are random or heuristic, resulting in the four categories of local-random, 

local-heuristic, global-random, and global heuristic. The last criteria of coordination 

strategy determine if the agent behavior results from some central coordination 

mechanism or is emergent (no central coordination). By combining the various criteria, 

we can see that there are 2 × 3 × 4 × 2 = 48 combinations, although only seven are 

actually named and examined: Random Reactive, Conscientious Reactive, Reactive with 

Flags, Conscientious Cognitive, Blackboard Cognitive, Random Coordinator, and 

Idleness Coordinator (Machado, Ramalho, Zucker, & Drogoul, 2002, p. 158).  

For communication types, flag-based communication occurs by altering the 

environment (e.g. writing information to and reading information from the graph’s 

vertices or edges). For this communication type, agents have access to information stored 

at their current location. Blackboard-based communications allow agents to read and 

write information to a globally available data store. Lastly, with message-based 

communication, agents pass information to each other directly, there is no global or 

graph-based storage of information (Machado, Ramalho, Zucker, & Drogoul, 2002, p. 

158).  

Through experimental results, the seven strategies are classified into three groups: 

random group, non-coordinated group, and top group (Machado, Ramalho, Zucker, & 

Drogoul, 2002, p. 168). The random group consists of two of the strategies that patrolled 

in a random fashion (Random Reactive and Random Coordinator), which performed the 
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worst. The non-coordinated group consists of different two strategies where the agents 

worked together in an emergent manner (Reactive with Flags and Blackboard Cognitive), 

which performed better than the random group. Finally, the highest performing group 

consists of the three remaining strategies: Conscientious Reactive, Conscientious 

Cognitive, and Idleness Coordinator.  

The best performing group consists of a mix of the four criteria: random and 

cognitive, different communication types, global and local information, and both 

emergent and centralized coordination. It is important to note that as the number of 

agents increase, the performance of all strategies tends to converge. Additionally, the 

architectures of the random and non-coordinated group can outperform the top group 

when they contain more agents. In other words, the higher number of agents can offset 

the lack of coordination and sophistication the better performing groups possess. 

Follow-on work expanded the experimental methodology and knowledge of the 

performance of difference architecture by creating new graph topologies and new agent 

strategies that outperform the previous ones by using reinforcement learning and agent 

negotiation or bidding (Almeida, et al., 2004). A theoretical analysis of multi-agent patrol 

strategies found that a theoretical optimal strategy can be used as a tool for analyzing 

actual strategies in differing classes of graph topologies (Chevaleyre, 2004). Agent 

strategies can be further separated into the two different classes of cyclic and partition-

based, meaning whether the agents are responsible for a sub-graph or share the entire 

graph. The theoretical optimal performance of both classes was proven. Later work 

showed that cyclic strategies can perform just as well as partitioning strategies unless a 
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graph topology contains one or more “tunnels” of vertices (Chevaleyre, Sempe, & 

Ramalho, 2004). 

The problem of using agents on a graph against adversaries was specified in 

(Hespanha, Kim, & Sastry, 1999), which identified a greedy agent strategy which 

pursued adversaries on the graph. The strategy was probabilistic in that the agents chose 

the next vertex to move to increase the probability of thwarting an attack. Further work 

extended that simple strategy to one where the agents cooperate via global 

communication in order to optimize their movements on the graph (actually a grid) to 

increase the efficiency at finding adversaries among the vertices; the agents make 

individual local decisions that increase the global goal of maximizing the number of 

adversaries found (Flint, Polycarpou, & Fernandez-Gaucherand, 2002). Work on agent 

strategies to predict adversary attacks and thwart them using cooperating agents found 

that modeling adversary behavior using Markov chains is possible (Subramanian & Cruz, 

2003). Further work showed how a Markov Decision Process approach using 

reinforcement learning can enable agents to adapt to adversary behavior as well as 

respond to changing adversary behavior (Santana, Ramalho, Corruble, & Ratitch, 2004). 

The problem of adversaries in the multi-agent patrol problem was further narrowed 

and analyzed to measure the effects of differing agent and adversary strategies when 

pitted against each other (Sak, Wainer, & Goldenstein, 2008). It was found that when an 

adversary can model the agent behavior, unpredictability is necessary to thwart their 

attacks; this is quite different from previous non-adversarial approaches to the multi-

agent patrol problem, where higher regularity results in higher performance because it 

minimizes the interval at which any vertex is left unvisited. Higher regularity is sufficient 
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when the adversary is targeting all vertices with equal importance, and the agent 

considers all vertices to be equally worth protecting. However, agent regularity is a 

detriment if the adversary is formulating the optimal time to attack because the adversary 

can easily determine when an agent will not thwart an attack. Therefore, agent 

unpredictability is important because it reduces an adversary’s ability to formulate a 

successful strategy from observations and predictions on agent behavior. Their problem 

formulation heavily influenced the problem formulation of this paper. Their identification 

of three classes of adversary strategies (random, waiting, and statistical) represents a 

whole range of possible intruder strategies to conduct experiments with.  

The random strategy simply chooses when to begin an attack at random. The waiting 

strategy observes when agents leave a vertex and attack immediately after. The statistical 

strategy is the most complicated; it observes the timesteps that an agent visits its target 

vertex and takes note of the intervals between each visit. Every time an agent leaves the 

target vertex, the adversary looks at previous intervals and calculates the probability that 

an agent will return to that vertex at least K timesteps later. If the probability of not 

returning is above a minimum threshold, the adversary will initiate the attack. Also, their 

research revealed exactly which types of agent strategies perform best against each of the 

adversary strategies under a wide variety of experimental variables such as the number of 

agents and K.  

Similar work which focuses on perimeter patrol rather than area patrol has also 

resulted in many contributions that apply to the problem of this paper. Examples of this 

are agent strategies with adjustable amounts of non-determinism to maximize patrol 

efficiency while maintaining a high probably of thwarting attacks (Agmon, Kraus, & 
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Kaminka, 2008) (Agmon, Sadov, Kaminka, & Kraus, 2008), dealing with malfunctioning 

agents and uncertainty of information on the adversary (Agmon, Kraus, & Kaminka, 

2009) (Agmon, Kraus, Kaminka, & Sadov, 2009), expanding the types of events in the 

experiment beyond an attack by an adversary as a boolean event to that based on the time 

taken for the agents to detect the attack (Agmon, 2010), and finally combining the above 

using a Markov model to create perimeter patrol agents under a wide variety of agent 

correctness of behavior, sensing of adversary actions, and perimeter topologies (Agmon, 

Kaminka, & Kraus, 2011). 

Game-theoretic approaches to the single-agent patrol problem with adversaries has 

resulted in strong mathematical models for agent strategies where the agent can solve the 

problem by reducing it to a hierarchy of sub-problems within basic linear, ring, and star 

graph topologies (Amigoni, Gatti, & Ippedico, 2008). Follow-on work created a more 

general mathematical model and improved the ability for agents to respond to changing 

topologies by sensing adversaries beyond those in directly adjacent vertices (Amigoni, 

Basilico, & Gatti, 2009). Later work introduced uncertainties in the agent’s ability to 

sense adversaries in vertices beyond those that are immediately adjacent and introduced a 

strategy that stochastically chooses a non-direct path to adversaries so as to make it more 

difficult for adversaries to model and predict agent movement, all with a computationally 

efficient algorithm (Basilico, Gatti, & Rossi, 2009) (Basilico, Gatti, Rossi, Ceppi, & 

Amigoni, 2009). 

A deterministic algorithm for thwarting attacks by adversaries based upon the 

concept of deadlines for vertex visitation (similar to K, but different for each vertex), 

where the agent must visit each vertex often enough to make a successful attack 
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impossible, was formulated as a Constraint Satisfaction Problem (CSP) (Basilico, Gatti, 

& Amigoni, 2009).  

The best agent strategy for a random intruder is one where the agents follow a TSP 

path with equal intervals and traveling in the same direction (Sak, Wainer, & 

Goldenstein, 2008). However, calculating the TSP path with large graphs is intractable, 

so some heuristic is necessary. A novel heuristic was created based on Newton’s law of 

gravitation, where each vertex has a mass that increases the longer it is left unvisited by 

an agent, which performs well relative to other TSP heuristics as the number of agents 

increase (Sampaio, Ramalho, & Tedesco, 2010). Another heuristic for solving TSP is to 

use ant colony optimization, where agents travel within the graph and deposit 

pheromones on the edges they travel on as a form of communication with each other. The 

amount of pheromones on an edge indicates to the other agents how much time has 

passed since an edge was last traversed. When these agents arrive at a vertex, it senses the 

amount of pheromones at each incident edge and greedily chooses the edge that has not 

been visited for the longest amount of time. This results in an emergent behavior where 

approximate solutions to a TSP of a graph are gradually achieved as the ants move about 

the graph (Dorigo & Gambardella, 1997). 

For agents patrolling a graph with critical vertices of weighted importance, an agent 

strategy of calculating the probability of such vertices being successfully attacked (the 

risk) at each timestep, where the probability increases the longer an agent does not visit a 

vertex, has resulted in two well performing two-phase based heuristics (Park, Kim, & 

Jeong, 2012). In this two-phased strategy, the first phase calculates the agent paths, 

taking into consideration the initial risks of all critical vertices. In the second phase, 
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during subsequent timesteps the agent will calculate alternate paths using the current 

calculated risks and switch to the path that reduces the risk if one exists. Further work 

with the weighted importance of critical vertices introduced an agent communication 

capability of passing messages to each other when they are directly adjacent, where a 

single agent is identified as a leader that coordinates the behavior of the others through 

such message passing (Pasqualetti, Durham, & Bullo, 2012).  
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Barriers and Limitations 

A limitation of this study was that only three adversarial strategies and six graphs 

were used during experimentation. The adversaries were identified and used previously 

by (Sak, Wainer, & Goldenstein, 2008); they represent three classes of complexity and 

sophistication for adversary strategies. The simplest class is based on random behavior, a 

slightly more sophisticated class is the waiting strategy, and the most sophisticated is the 

statistical strategy. The six graphs also come from previous research (Almeida, et al., 

2004) and represent several classes of problem domains where the graphs take the form 

of rings, corridors, islands, grids, and otherwise complex environments. The 

implementation of the strategies is detailed in the Experimental Design section of the  

chapter. The graphs are shown in Figure 15 of the same chapter. 

A limitation of this problem formulation was that the only communication or 

coordination among the agents is the sharing of which vertices have been discovered to 

be critical. Limited communication and decentralized decision making among the agents 

is a common theme among the current research as it tends to more closely model real 

world constraints for agents (Flint, Polycarpou, & Fernandez-Gaucherand, 2002), (Iocchi, 

Marchetti, & Nardi, 2011), (Franco, López-Nicolás, Sagüés, & Llorente, 2015), (Alam, 

Edwards, Bobadilla, & Shell, 2015), and (Yan & Zhang, 2016). Such constraints apply to 

agents patrolling the physical world, whether the agents are physical robots or software 

programs traversing a computer network from computer to computer.  

Summary 

The multi-agent patrol problem was introduced, and a problem statement was 

defined in suitable detail to formulate the dissertation goal of creating new heuristic agent 
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strategies. Four research questions were identified and described to guide the research in 

the attainment of this goal. Prior research was identified and described to prove the 

relevance and significance of this proposed research. Finally, the barriers and limitations 

of this proposed research have been delineated so that the scope of the research is clear. 
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Chapter 2. 

Review of the Literature  

This review includes research concerning the multi-agent area-patrol problem with 

multiple adversaries. The Relevance and Significance section of the Introduction chapter 

includes many of the same literature reviewed in this section; it is a broad overview of the 

problem. This chapter, in contrast, is focused on literature that supports the dissertation 

goal, research questions, and methodology. This section includes multi-agent area-patrol 

problems that are single-agent or single-adversary oriented, as long there is an adversary. 

Several domains of this problem will be excluded, however. The related perimeter-patrol 

version of the full problem is excluded. Research more focused on physical robots in the 

application of patrol problems is also excluded as they tend to be more concerned with 

robot sensors and effectors. Lastly, simpler versions of the problem that are patrol related 

but without adversaries is excluded except for (Chevaleyre, 2004), as such research tends 

to be focused solely on maximizing graph coverage or reducing vertex idleness. 

A theoretical analysis of the multi-agent patrol problem which organized the agent 

strategies from previous research found some interesting results (Chevaleyre, 2004) 

(Chevaleyre, Sempe, & Ramalho, 2004). First, it was found that good performance could 

be achieved with very simple agents who are simply reactive in nature and with minimal 

or non-existent inter-agent communication. Second, the agents performed better when the 

graph was partitioned such that an agent only patrolled within an assigned partition. 

However, this research did not take into consideration the negative effects that adversary 

strategies have on the agents’ patrol effectiveness. For example, an adversary can attack 

as soon as an agent leaves a vertex and would have an advantage because it could 
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complete the attack in the interval that the vertex is left unvisited. Instead, the research 

simply focused on measuring and minimizing the idleness of the vertices during agent 

patrol, which is only beneficial for thwarting attacks from a simple adversary strategy 

that does not take into consideration the agents’ behavior. 

The research of (Paruchuri, Pearce, Tambe, Ordonez, & Kraus, 2007) introduced the 

multi-agent patrol problem with adversaries. It structured the problem as a Bayesian 

game with a new heuristic to efficiently find an optimal agent strategy to counter an 

unknown adversary strategy. The adversary can observe the agents’ movements in the 

graph and determine if there are any vertices that the agent does not visit often during its 

patrol. If such a vertex is found, the adversary begins the attack. If the agent does not 

return to that vertex in time, the attack is successful. Once the adversary decides to attack, 

it must continue to attack for a fixed number of timesteps until it is either successful or 

has been thwarted. Thus, this research introduced the concept of an adversary that 

observes the agents and can exploit the agents’ actions, necessitating agent strategies that 

take the adversary’s strategy into account. Note that the problem was formulated where 

the agent was aware of the adversary observing its movements, so their strategies were 

constantly updated back and forth in response to each other’s behavior. This is applicable 

to the dissertation goal of designing a new agent that can counter any of the three 

adversary strategies. They modeled the scenario as a Bayesian game which has a well-

known problem of being NP-hard to solve because the situation becomes a Stackleberg 

game  (Conitzer & Sandholm, 2006) where the agent and adversary take turns changing 

their strategy and therefore causing the other’s strategy to change in response. Praveen et. 

all designed a heuristic method for approximately solving this problem in a tractable 
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manner. However, the research did not identify or measure the results of multiple types of 

agent and adversary strategies when competing against each other and once an attack is 

successful or thwarted, the game ends. 

Game-theoretic models were applied to the multi-agent patrol problem with 

adversaries in (Amigoni, Gatti, & Ippedico, 2008), where the graph can change 

dynamically while the game is underway. Note that this proposed research does not allow 

the graph to change while the agents and adversaries are running but the approach taken 

by Amigoni, Gatti, & Ippedico is interesting because it removes the agents’ ability to 

monitor the adversary. However, a major deficiency of the research is that, unlike this 

proposed research, the game only runs until a single attack by an adversary is successful 

or thwarted.  

The research of (Sak, Wainer, & Goldenstein, 2008)  described three distinct 

adversary strategies of random, waiting, and statistical, which will be used in this 

research. Several agent strategies were created to counter these adversaries based on total 

random walking and modified shortest paths of all vertices with random permutations. 

The strategies could optionally have the agents responsible for separate graph partitions. 

This work provided a framework for measuring the performance of agents against 

adversaries using randomly generated graphs. However, those agent strategies required 

pre-computation (e.g. graph partitioning, k-means clustering, or TSP route calculation) 

and performed poorly when competing against any other adversary strategy than the one 

each was designed to counter. 

A non-game approach was taken by (Basilico, Gatti, & Amigoni, 2009) where the 

goal was to design an algorithm that generated a static deterministic patrol route where 
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each vertex was guaranteed to stay protected from successful attack. To do this, the route 

must visit each vertex before the attack interval has elapsed since the last visit. They 

argue that if this goal can be achieved for a graph, it is fundamentally superior to a non-

deterministic agent strategy, since it would become irrelevant what strategy the adversary 

was using. One problem of this approach is that it requires the pre-computation of the 

route, which would require some type of central coordinator to prepare the agents and 

place them in their starting positions prior to patrolling. A possible improvement would 

be to satisfy the same goal with de-centralized and minimally communicating agents. 

Related follow-on work added an interesting adversary requirement of having to navigate 

the graph to reach the target vertex and limiting the ability of the adversary to only 

observe agents near the adversary’s current location (Basilico, Gatti, Rossi, Ceppi, & 

Amigoni, 2009). However, that work did not take into consideration a multi-agent system 

and was again centrally coordinated. 

Generating a nondeterministic patrol path for agents against an adversary that has 

complete knowledge of the agent’s positions can be done linear time (Agmon, Kaminka, 

& Kraus, 2011). However, their algorithm is limited to a perimeter patrol rather than area 

patrol, which is much simpler. Their previous work also focused on perimeter patrol only 

(Agmon, 2010). It may be possible to extend this body of work to adapt it to the area 

patrolling, which was done by (Alam, Edwards, Bobadilla, & Shell, 2015). They created 

algorithms using Markov chains in a distributed manner, without requiring centralized 

coordination or agent communication.  
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Chapter 3. 

Methodology 

Introduction 

The methodology answers the following four research questions: Can effective agent 

strategies be developed from existing strategies for solving related problems? Can 

effective agent strategies be developed for countering any adversary? How do these 

developed agent strategies perform in relation to each other when measured? How do the 

problem variables affect agent strategy performance? The following sections of this 

chapter explain how the research questions on developing agent strategies were 

answered, how the strategies performed, and an examination of the dependence of 

performance on program parameters.  

Adversary Strategies 

Four adversary strategies were created: random, waiting, statistical, and hybrid. At 

each timestep, these strategies are informed whether an agent occupies their target vertex 

and uses the information to decide whether to start an attack at that timestep. As stated 

previously, once an agent initiates an attack, the agent is committed to the attack for K 

timesteps; an attack is only successful if an agent never occupies the vertex for the entire 

K timesteps. Note that none of these adversaries were implemented to attack if the target 

vertex is occupied, as that would be pointless since it would result in the attack being 

immediately thwarted. The following paragraphs will discuss the design of each 

adversary strategy, in order from least to most sophisticated. 
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The random adversary is the simplest and is the only one to not maintain any state 

between timesteps. At each timestep, the random adversary will initiate an attack with a 

1/K probability; it will not attack if the vertex is occupied.  

The waiting adversary, which is slightly more complex, will only start an attack if 

the target vertex was occupied at the previous timestep and is currently unoccupied. 

Therefore, it will not attack during the first timestep or any subsequent time step until an 

agent occupies the target vertex at least once. This adversary only keeps a single variable 

in state between timesteps: Was the target vertex occupied or not during the previous 

timestep? 

The statistical adversary is the most complex one in that it attempts to predict the 

optimal time to attack by observing agent occupation of the target vertex over time, it 

attacks when it predicts that there is a chance of success. Say a maximal unoccupied 

interval (MUI) is a longest interval of time that a given vertex is unoccupied by an agent. 

This adversary will track the total number L of MUIs for its target vertex, and the number 

C of MUIs of duration at least K timesteps. The adversary attacks if and only if 𝐶 ≥
𝐿

2
. 

Intuitively, it attacks if there appears to be at least a 50% chance that the vertex will 

remain unoccupied for at least K timesteps, based on history. 

The hybrid adversary is a combination of the previous three, in which each target 

vertex is assigned one of those three adversary strategies. The distribution of these 

adversaries among the target vertices are approximately uniform. This strategy is a more 

complicated scenario for an agent because an approach that is good for one target vertex 

will be bad for another (because they could have different adversaries). Therefore, an 

agent must be more general in nature when countering the hybrid strategy.  
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Agent Strategies 

The research method taken for the first two questions was to develop agent strategies 

and quantitatively evaluate them with respect to each of the four adversary strategies. 

Two categories of agent strategies were created: control and covering. The control 

strategies are relatively simple compared to the covering strategies and serve as a 

baseline to determine if the more advanced capabilities of the covering strategies result in 

improvements. When an agent arrives at a vertex, the only decision its strategy must 

make is which incident edge of its current vertex to choose next. The agent will then 

begin traversing the edge and after arriving at the endpoint of the edge, will chose another 

edge, repeating the cycle. The agent cannot remain on the vertex, therefore an edge must 

be chosen. 

Control Agent Strategies 

The three control strategies are named random (control-rnd), least-recently-used-

edge (control-lue), and probabilistic-least-recently-used-edge (control-plue). The control-

rnd strategy simply chooses the next edge to move to in a completely random manner. 

control_rnd_decide = function (api) 

  edges = api.incident_edges().toList(); 

  return edges[random(0, edges.length())]; 

Figure 1 - control_rnd strategy 

The control-lue strategy chooses the incident edge of its current vertex that the agent 

has not chosen for the longest amount of time, incident edges that have never been 

chosen are assumed to have been so for the duration of the entire simulation. If two or 

more incident edges have been unchosen for the same amount of time, one of them is 

picked randomly. After choosing an edge, the control-lue strategy stores the timestep that 

the edge was chosen, it will do this for all edges it chooses for the duration of the 
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simulation. Remember that the API only provides a unique and opaque identifier for each 

edge and does not provide information about the destination vertex and the identifier is 

unique to not only the edge but also the edge direction. For example, an edge that goes 

from vertices a and b will have two edge identifiers: one for a to b and another for b to a. 

ects = map of edge ids to timesteps when chosen; 

control_lue_decide = function (api) 

  edge = api.incident_edges() 

                    .map(e -> (ects.get(e).or(0),e)) 

                    .min(((ts1,e1),(ts2,e2)) -> ts1 >= ts2) 

                    .map((ts,e) -> e); 

  ects.put(edge, api.current_timestep()); 

  return edge; 

   

Figure 2 - control_lue strategy 

The control-plue control strategy is like the control-lue one but differs slightly by 

choosing the incident edge probabilistically, where the edges that have been unchosen the 

longest have a higher chance of being chosen than the others. Specifically, the number of 

timesteps which each incident edge has been unchosen are summed as 𝑆 = ∑ 𝑡𝑠(𝑒)𝑒∈𝐸 , 

where E is the set of incident edge identifiers and ts is a function that returns the number 

of timesteps since the edge was last chosen or the number of timesteps elapsed during the 

simulation if the edge has never been chosen. The probability of an edge being chosen is 

the number of timesteps it has been unchosen divided by the S: 𝑃(𝑒) =
𝑡𝑠(𝑒)

𝑆
. 

ects = map of edge ids to timesteps when chosen; 

control_plue_decide = function (api) 

  ts = api.current_timestep(); 

  edges = api.incident_edges() 

             .map(e -> (ts - ects.get(e).or(0),e)) 

             .flatMap((ts,e) -> n_copies(ts, e)) 

             .toList(); 

  edge = edges[random(0, edges.length())]; 

  ects.put(edge, api.current_timestamp()); 

  return edge; 

   

Figure 3 - control_plue strategy 
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Covering Agent Strategy 

The covering agent strategy differs from the control strategies by: Using a new 

concept of critical vertex covering, learning the graph topology, and being composed of 

an edge choosing primitives (ECP) that is specified when the agent is instantiated. Each 

topic will be described in the following paragraphs and then the pseudocode code of the 

strategy will be presented and explained. 

Critical vertex covering is where each agent takes sole responsibility for the 

protection of a subset of the critical vertices. When an agent arrives at a vertex, the API 

provides information on if the agent was the first to thwart an attack on that vertex. If that 

is the case, the agent will place that vertex into its covered vertex set, which is a subset of 

the critical vertex set. The agent can deduce if a critical vertex is covered by another 

agent by checking if it is not in its covered vertex set. Knowing this information, 

combined with learning the graph topology, allows the agent to also avoid the critical 

vertices that are covered by other agents.  

covered_vertices = {}; the critical vertices covered by this agent 

uncovered_vertices = {}; the critical vertices covered by other agents 

covered_vertex_visit_ts = a map of covered vertices to last visit time 

covering_decide = function(api) 

  v = api.current_vertex(); 

  ts = api.current_timestep(); 

  if api.discovered_critical() then 

    covered_vertices.add(v); 

  uncovered_vertices = api.critical_vertices() – covered_vertices; 

  covered_vertex_visit_ts.put(v, ts); 

  edge = some logic to choose an edge 

  return edge; 

Figure 4 - Covered Vertices Discovery 

The graph topology is learned by keeping state when travelling on an edge and 

comparing it to the information after arriving at the destination vertex. Specifically, 

before travelling on an edge, the current timestep and chosen edge are stored. After 

arriving at the destination vertex, the current timestep is subtracted from the stored 
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timestep to calculate the amount of time it takes to traverse that edge. Additionally, the 

current vertex is noted and the fact that the previously chosen edge has the current vertex 

as its destination is stored. 

edge_lengths = map of edge id to edge timestep traversal time lengths 

edge_distinations = map of edge id to its destination vertex 

prev_edge = null; 

prev_ts = null; 

prev_valid = false; 

covering_decide = function(api) 

  if prev_valid then 

    edge_lengths.put(prev_edge, api.current_timestep() – prev_ts); 

    edge_distinations.put(prev_edge, api.current_vertex()); 

  edge = some logic to choose an edge 

  prev_edge = edge 

  prev_ts = api.current_timestep(); 

  prev_valid = true; 

  return edge; 

Figure 5 - Graph Topology Discovery 

An ECP is what the covering agent delegates to in order to choose the next edge to 

travel on. When delegating to an ECP, the strategy provides it the agent API, the covered 

vertex set, and the information that the agent has deduced: the set of vertices covered by 

other agents, the edge lengths, and the edge destinations. There are many possibilities for 

ECP design and it is not necessarily the case that just one could be written that would 

perform well. Instead, it is possible to arrange multiple ECPs in a chain, giving each one 

an opportunity to choose an edge or not. This represents a layering and prioritization of 

strategies rather than a monolithic design. Thus, there is a special type of compound ECP 

which is composed of two ECPs and asks the first one to choose an edge and if it does 

not, asks the second. This compound ECP can be composed of itself recursively to 

support any number of ECPs in a chain. However, one of the ECPs (ideally the last in the 

chain) must choose an edge. 
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ecp_choose_1 = primary ecp 

ecp_choose_2 = secondary ecp 

compound_ecp_choose = function( 

  api,  

  covered_vertices,  

  uncovered_vertices, 

  covered_vertex_visit_ts, 

  edge_lengths,  

  edge_destinations) 

    return ecp_choose_1( 

      api,  

      covered_vertices,  

      uncovered_vertices, 

      covered_vertex_visit_ts, 

      edge_lengths,  

      edge_destinations) 

    .or( 

      ecp_choose_2( 

        api,  

        covered_vertices,  

        uncovered_vertices,  

        covered_vertex_visit_ts, 

        edge_lengths,  

        edge_destinations)); 

Figure 6 - Compound ECP 

The covering agent strategy is thus a combination of the aforementioned behavior 

and an ECP, the pseudocode code for the covering agent strategy is the combination of 

the previously described pseudocodes. 
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covered_vertices = {}; the critical vertices covered by this agent 

uncovered_vertices = {}; the critical vertices covered by other agents 

covered_vertex_visit_ts = a map of covered vertex to last visit time 

edge_lengths = map of edge ids to edge lengths 

edge_distinations = map of edge ids to destination vertex 

prev_edge = null; 

prev_ts = null; 

prev_valid = false; 

ecp_choose = the ECP choose function that the agent strategy will use 

covering_decide = function(api) 

  v = api.current_vertex(); 

  ts = api.current_vertex(); 

  if api.discovered_critical then 

    covered_vertices.add(v); 

  uncovered_vertices = api.critical_vertices() – covered_vertices; 

  covered_vertex_visit_ts.put(v, ts);   

  if prev_valid then 

    edge_lengths.put(prev_edge, ts – prev_ts); 

    edge_distinations.put(prev_edge, v); 

  edge = ecp_choose( 

      api,  

      covered_vertices,  

      uncovered_vertices,  

      covered_vertex_visit_ts, 

      edge_lengths,  

      edge_destinations); 

  prev_edge = edge 

  prev_ts = api.current_timestep(); 

  prev_valid = true; 

  return edge; 

Figure 7 - Covering Agent 

There are many types of ECPs, which will be discussed shortly, but first it is 

important to describe a decisive ECP, which will always choose an edge. Because the 

covering agent strategy delegates to a ECP to choose an edge and an edge must be 

chosen, at least one ECP in a chain, preferably the last, must choose an edge every time it 

is asked to do so. There are three types of decisive ECPs, each of which is closely related 

to the three control agent strategies but take advantage of the information that the 

covering agent strategy provides them. These ECPs are random (rnd), least-recently-

used-edge (lue), and probabilistic-least-recently-used-edge (plue). Each will be described 

in the following paragraphs, one for each. 
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The rnd ECP will choose an incident edge randomly but will avoid edges whose 

endpoint is known to be covered by another agent. Thus, it is like the control-rnd agent 

but is more sophisticated by avoiding occupying critical vertices that are already 

protected by another agent. This gives each agent using the rnd ECP more time to protect 

the vertices that it itself covers. Specifically, this ECP takes the incidence edge set from 

the agent API and culls all edges that are known to go to the covered vertex of another 

agent from consideration for choosing. If after culling those edges, there are no edges left 

to choose (which means all edges go to such vertices), this ECP will switch to a fall back 

behavior of randomly selecting any of the incident edges. It does this because it is a 

decisive ECP, which must always choose an edge. 

rnd_ecp_choose = function( 

  api,  

  covered_vertices,  

  uncovered_vertices,  

  covered_vertex_visit_ts, 

  edge_lengths,  

  edge_destinations) 

    all_edges = api.incident_edges(); 

    culled_edges = all_edges 

               .remove(e -> uncovered_vertices 

                              .contains(edges_destinations.get(e)) 

               .toSet(); 

    edges = if culled_edges.isEmpty() then all_edges else culled_edges; 

    return edges[random(0, edges.length())]; 

Figure 8 - rnd ECP 

The lue ECP will, like the control-lue agent strategy, deterministically choose the 

edge that it has not chosen for the longest time. However, incident edges that the covered 

agent reports have a destination vertex that is covered by another agent are treated as if 

they were chosen exactly one timestep in the past, which makes them much less likely to 

be chosen. If an edge has never been chosen, it is assumed to have been unchosen for the 

number of timesteps that have elapsed in the simulation. Thus, each edge is given a score 

equal to how much time has passed since the ECP last chose it. The edge with the highest 
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score is chosen and if there are multiple such edges, one them is chosen randomly. After 

choosing an edge, the ECP stores the timestep that the edge was chosen so that another 

edge will be chosen the next time the agent occupies the same vertex. This agent is 

decisive and will always choose an edge, even if all edges have a destination vertex that 

is covered by another agent. 

ects = map of edges to timesteps when chosen; 

lue_ecp_choose = function( 

  api,  

  covered_vertices,  

  uncovered_vertices, 

  covered_vertex_visit_ts, 

  edge_lengths,  

  edge_destinations) 

    ts = api.current_timestep(); 

    edge = api.incident_edges() 

                .map(e ->  

                  If uncovered_vertices 

                              .contains(edge_destinations.get(e)) then 

                    return (ts – 1, e); 

                  else 

                    return (ects.get(e).or(0), e); 

                .min((ts1, e1),(ts2,e2)) -> ts1 >= ts2); 

    ects.put(edge, ts); 

    return edge; 

Figure 9 - lue ECP 

The plue ECP, like the control-plue agent strategy, chooses incident edges that it has 

not travelled on for the longest time, but in a probabilistic manner. Each edge is given a 

probability weight greater than one, which is equal to the number of timesteps that have 

elapsed since it was last chosen. An exception is that incident edges that the covered 

agent reports to have a destination vertex that are covered that are known to go to the 

covered vertex of another agent are given a minimum possible weight of the value one. 

Conceptually, the edges are chosen by a roulette wheel selection and is implemented as 

follows. First, an array with a length equal to the sum of all weights is created and each 

edge is inserted into this array as many times as its weight. Finally, a random number 

from zero to the size of array is chosen and the edge at that index in the array is chosen. 



 

 

33 

 

While this implementation could encounter run time memory allocation errors for very 

large edge weights, number of vertices, and number of agents (because the array would 

have large length), such errors did not occur during this experiment because the edge 

weights and number of vertices are relatively low. Additionally, the ratio of agents to 

vertices is relatively high. Thus, the array that was created at run time was never large 

enough to cause an error. 

ects = map of edges to timesteps when chosen; 

plue_ecp_choose = function( 

  api,  

  covered_vertices,  

  uncovered_vertices, 

  covered_vertex_visit_ts, 

  edge_lengths,  

  edge_destinations) 

    ts = api.current_timestep(); 

    edges = api.incident_edges() 

                .map(e ->  

                  if uncovered_vertices 

                            .contains(edge_destinations.get(e)) then 

                    return (1, e); 

                  else 

                    return (ts - ects.get(e).or(0), e)); 

                .flatMap((w,e) -> n_copies(w, e)) 

                .toList();              

    edge = edges[random(0, edges.length())]; 

    ects.put(edge, ts); 

    return edge; 

Figure 10 - plue ECP 

Three covering agents are defined that are each composed of exactly one of the 

decisive ECPs: covering-rnd, covering-lue, and covering-plue. These represent the 

simplest possible covering agent strategies and are complementary to the three control 

agents control-rnd, control-lue, and control-plue but differ by avoiding the covered 

vertices of other agents. 

In addition to these decisive ECPs, there are four indecisive ECPs that do not always 

choose an edge. These are designed to be used in a chain of ECPs by using one or more 

compound ECPs that ends with one of the decisive ECPs. These four ECPs are hard-limit 
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(hl), two variants of soft-limit (either vertex or edge focused) named sl-vertex and sl-

edge, and peek-back (pb). Each will be described in the following paragraphs. 

The hl ECP determines if the agent must return to any one of its covered vertices so 

that it arrives at that vertex before K timesteps have elapsed since last occupying it. To do 

this, it uses the deduced edge weights from the covering agent to heuristically determine 

how many time steps past this deadline will be remaining for each covered vertex after 

the agent can arrive at it from its current vertex. The heuristic to calculate the maximum 

estimated distance for each vertex uses the maximum learned incident edge weight 𝑊𝐼 

and the maximum global learned edge weight 𝑊𝐺. The maximum learned incident edge 

weight is calculated as 𝑊𝐼 = max
𝑖∈𝐼

𝑤(𝑖), where I is the set of incident edges and the 

function w returns the integer weight of that edge if deduced by the covering agent or the 

maximum value for the data type (e.g. 32-bit integer) if unknown. The maximum learned 

global edge weight is calculated as 𝑊𝐺 = {
𝑀𝐴𝑋_𝐼𝑁𝑇𝐸𝐺𝐸𝑅, |𝐸| = 0

max
𝑒∈𝐸

𝑣(𝑒) , |𝐸| > 0, where E is the set 

of all edges that the covering agent has deduced the weight of and the function v returns 

the integer weight value for that deduced edge weight; MAX_INTEGER is the maximum 

value for the data type (e.g. 32-bit integer). For each covered vertex, the strategy 

calculates the deadline timestep 𝐷(𝑣) = 𝑝(𝑣) + 𝐾, where v is the covered vertex, the 

function p returns the last timestep that the agent occupied a vertex or zero if never 

occupied (it is never negative), and K is the attack interval. The number of timesteps 

remaining until the deadline is exceed is 𝑅(𝑣) = 𝐷(𝑣) − 𝑡𝑠, where ts is the value of the 

current timestep of the simulation; the output is a positive number if there is time 

remaining until the deadline and negative if the deadline has passed. Next, a heuristic of 

the estimated maximum number of timesteps needed to reach a covered vertex v for any 
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chosen incident edge of the current vertex is 𝑀(𝑣) = 𝑊𝐼 + 𝑊𝐺 + 𝑑(𝑣), where the 

function d is the agent API call (best_dist_to_critical_vertex) to return the distance of the 

shortest path to that vertex. The value L for each covered vertex is calculated as 𝐿(𝑣) =

𝑅(𝑣) − 𝑀(𝑣), if L is positive then it is estimated that the agent can reach the covered 

vertex before the vertex is susceptible to a successful attack. Next, all covered vertices 

with a value for L that is negative are discarded from further consideration, as they cannot 

be reached in time. If any covered vertices are remaining, then this ECP will choose the 

one with the lowest value of 𝑑(𝑣) and use the agent API to choose the incident edge that 

is the first step on that shortest path. Otherwise, this ECP will decline to choose an edge, 

giving the next ECP in the chain an opportunity to choose one. 

hl_ecp_choose = function( 

  api,  

  covered_vertices,  

  uncovered_vertices, 

  covered_vertex_visit_ts, 

  edge_lengths,  

  edge_destinations) 

    ts = api.current_timestep(); 

    k = api.attack_interval(); 

    global_max = edge_lengths.values() 

                   .max((length1,lenthg2) -> length1 >= length2) 

                   .or(MAX_INTEGER); 

    local_max = api.incident_edges() 

                   .map(e -> edge_lengths.get(e).or(MAX_INTEGER)) 

                   .max((length1,length2) -> length1 >= length2); 

    distances = covered_vertices 

                 .map(v -> (v, api.best_dist_to_critical_vertex(v)) 

                 .toMap(); 

    return covered_vertices 

            .map(v -> (v, covered_vertex_visit_ts.get(v).or(0))) 

            .map((v,t) -> (v, t + k)) 

            .map((v,d) -> (v, d – ts)) 

            .map((v,r) -> ( 

              v,  

              r – (local_max + global_max + distances.get(v).dist())) 

            .remove((v,l) -> l < 0) 

            .map((v,t) -> v) 

            .map(v -> (v, distances.get(v).dist()) 

            .min(((v1,t1),(v2,t2)) -> t1 >= t2)) 

            .map((v,t) -> v) 

            .map(v -> distances.get(v).edge()); 

Figure 11 - hl ECP 
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The two variants of the soft-limit ECPs differ from the hl ECP in that they allow the 

agent to return to a covered vertex after K timesteps have elapsed since last occupying it. 

These two soft-limit ECPs accomplish this in slightly different ways but neither will ever 

choose an edge whose other endpoint is a vertex covered by another agent. 

The first way, which is sl-vertex, calculates a tuple for each vertex covered by the 

agent. This tuple is composed of the covered vertex, the edge which will get the agent to 

that vertex the quickest, and the score for that vertex. The score is calculated with the 

function 𝑆(𝑣) =
(𝑡𝑠+𝑑(𝑣))−𝑝(𝑣)

𝐾
, where v is a covered vertex of this agent. Intuitively, it is 

when the agent can arrive at covered vertex v subtracted by the last time it visited it, 

divided by the attack interval. Thus, it is the ratio of how many timesteps will have 

passed when arriving at that vertex since last visiting it, to the attack interval. Next, all 

covered vertices with scores less than the value one are removed from further 

consideration and the edge for the covered vertex that can be arrived at the soonest is 

chosen. If all covered vertices had scores less than the value one, no edge is chosen. 
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sl_vertex_ecp_choose = function( 

  api,  

  covered_vertices,  

  uncovered_vertices, 

  covered_vertex_visit_ts, 

  edge_lengths,  

  edge_destinations) 

    ts = api.current_timestep(); 

    k = api.attack_interval(); 

    distances = covered_vertices 

                 .map(v -> (v, api.best_dist_to_critical_vertex(v)) 

                 .toMap(); 

    return covered_vertices 

             .map(v -> (v, covered_vertex_visit_ts.get(v).or(0))) 

             .map((v,t) -> (v,t,distances.get(v))) 

             .map((v,t,(e,d)) -> (v,t,e,d,ts + d)) 

             .map((v,t,e,d,a) -> (e,(a – t) / k), d)) 

             .remove((e,s,d) -> s < 1) 

             .remove((e,s,d) -> uncovered_vertices.contains(e)) 

             .map((e,s,d) -> (e,d)) 

             .min((e1,d1),(e2,d2)) -> d1 >= d2) 

             .map((e,d) -> e); 

Figure 12 - sl_vertex ECP 

The second way is sl-edge, which differs by choosing an edge based on calculating a 

cost of the incident edges rather than scoring the covered vertices. However, the only 

incident edges that have a cost calculated and considered are those that the covering agent 

reports do not have an endpoint that is the covered vertex of another agent (a “safe” 

incident edge). The cost of each such “safe” edge is calculated by considering each 

covered vertex as well. First, the amount of “time left” after a “deadline” for each 

covered vertex, when traveling though one of the edges, is calculated, formally as 

𝐿(𝑒, 𝑣) = (𝑝(𝑣) + 𝐾) − (𝑡𝑠 + 𝑑(𝑒, 𝑣)), where e is an incident edge, v is a covered 

vertex, and the function d is the API call (dist_to_critical_vertex) that returns how many 

timesteps it will take to arrive at vertex v through incident edge e. In this formula, the 

“deadline” for the vertex is (𝑝(𝑣) + 𝐾) and the arrival time is (𝑡𝑠 + 𝑑(𝑒, 𝑣)). By 

subtracting them, it is determined how many timesteps will be left until the deadline time 

passes when travelling to that vertex through that edge. Thus, to determine a cost for each 
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edge, a vector of integers is created for that edge and each covered vertex using 

𝐹(𝑒, 𝑣) = 𝐿(𝑒, 𝑣) for all 𝑣 with  𝐿(𝑒, 𝑣) > 0; note that all combinations of incident edge 

and covered vertex that result in negative time being left at arrival are removed from the 

vector and are not considered any further. Next, any edge whose 𝐹(𝑒) invocation results 

in an empty vector is removed from consideration as a choice. Lastly, the sum of each 

element of a vector is calculated to arrive at the edge cost: 𝐶(𝑒) = ∑ ∑ 𝑖𝑖 of 𝐹(𝑒,𝑣)𝑣∈𝑉 , 

where e is a “safe” incident edge and V is the set of covered vertices. Note that the cost is 

always a positive number. This ECP then chooses the edge with the lowest cost. 

sl_edge_ecp_choose = function( 

  api,  

  covered_vertices,  

  uncovered_vertices, 

  covered_vertex_visit_ts, 

  edge_lengths,  

  edge_destinations) 

    ts = api.current_timestep(); 

    k = api.attack_interval(); 

    distances = covered_vertices 

                 .map(v -> (v, api.best_dist_to_critical_vertex(v)) 

                 .toMap(); 

    avoid_edges = edge_destinations 

                    .remove((e,v) -> uncovered_vertices.contains(e)) 

                    .map((e,v) -> e) 

                    .toSet();  

    return api.incident_edges() 

            .remove(e -> avoid_edges.contains(e) 

            .map(e -> ( 

              e, 

              covered_vertices 

               .map(v -> (v, covered_vertex_visit_ts.get(v).or(0))) 

               .map((v,t) -> ( 

                            t + k, 

                            ts + api.distance_to_critical_vertex(e,v)) 

               .map((d,a) -> d – a) 

               .remove(time_left -> time_left < 0) 

               .toList()) 

            .remove((e,time_lefts) -> time_lefts.isEmpty()) 

            .map((e,time_lefts) -> (e,time_lefts.sum()) 

            .min((e1,s1),(e2,s2)) -> s1 >= s2) 

            .map((e,vs) -> e); 

Figure 13 - sl_edge ECP 
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The remaining ECP is pb, it checks each non-critical vertex it is occupying to 

determine if returning to it immediately after leaving it will thwart an attack on it. To do 

this, it randomly chooses an incident edge that does not go to another agent’s covered 

vertex and then immediately returns to that same vertex along the same edge, in reverse. 

Each vertex is only checked once and when the current vertex has already been checked, 

this ECP declines to choose an edge. Eventually, all vertices will either be checked or be 

critical and this primitive will cease choosing edges altogether. It is designed to quickly 

find attacks in the beginning of the simulation and then stop as soon as possible. 
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vertices_checked = {}; 

edges_checked = {}; 

struct ReturnToCheck = { 

  return_edge, 

  check_vertex 

} 

return_to_check = null; 

checking_vertex = null; 

pb_ecp_choose = function( 

  api,  

  covered_vertices,  

  uncovered_vertices, 

  covered_vertex_visit_ts, 

  edge_lengths,  

  edge_destinations) 

    v = api.current_vertex(); 

    chosenEdge = null; 

    vertices_checked.addAll(api.critical_vertices()); 

    if checking_vertex != null then 

      if v == checking_vertex then 

        vertices_checked.add(checking_vertex); 

      checking_vertex = null; 

    if return_to_check != null then 

     if api.incident_edges().contains(return_to_check.return_edge) then 

       chosen_edge = return_to_check.return_edge; 

       checking_vertex = return_to_check.check_vertex; 

     return_to_check = null; 

    if chosen_edge == null then 

      if !vertices_checked.contains(v) then 

        avoid_edges = edge_destinations 

                       .remove((e,v) -> uncovered_vertices.contains(e)) 

                       .map((e,v) -> e) 

                       .toSet();  

        chosen_edge = api.incident_edges 

                .remove(e -> edges_checked.contains(e)) 

                .map(e -> (e, edge_destinations.get(e).or(null))) 

                .map((e,d) -> ( 

                     e, 

                     d.map(v -> covered_vertices.contains(v).or(false)) 

                .remove((e,v) -> v == true) 

                .remove((e,v) -> avoid_edges.contains(e)) 

                .map((e,v) -> e) 

                .any(); 

        if chosen_edge != null then 

          return_to_check = new ReturnToCheck { 

            return_edge = chosen_edge.reversed(), 

            check_vertex = v 

          }; 

    if chosen_edge != null then 

      edges_checked.add(chosen_edge); 

 

    return chosen_edge; 

Figure 14 - pb ECP 
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By combining these ECPs in different ways (but always ending with a decisive 

ECP), many varying behaviors can be created that interact with adversaries in diverse 

ways. Many combinations (198 in total) were created with three being just the terminal 

primitives alone and with different combinations of all others without duplicates, always 

ending with a terminal primitive. However, only a few were assumed to perform best 

against the different adversaries, which will be explained in the following paragraphs. 

Each of the indecisive ECPs were designed to be effective against different 

adversaries. The hl ECP was designed to be effective at countering the waiting adversary 

because any critical vertex that remains unvisited for longer than K timesteps will 

definitely be compromised. The two soft-limit ECPs (sl-vertex and sl-edge) were 

designed to counter the statistical and random adversaries; where it is not vital to return 

to vertices within K timesteps because it is unlikely that an attack on them will begin as 

soon as an agent leaves them. The pb ECP was also designed to counter the waiting 

adversary because its goal is to find vertices being attacked immediately after an agent 

leaves them. 

The decisive ECPs were also designed with specific adversary strategies in mind, 

when used in a chain. The rnd ECP is designed to confuse the statistical adversary by 

being unpredictable. The lue and plue ECPs were designed to counter the random and 

waiting strategies.  

Because there are so many possible combinations of covering agent strategies with 

different chains of ECPs, it is not practical to define them all. In fact, it was not entirely 

known if the ECP combinations that were assumed to be effective against certain 

adversaries would actually be so. However, some general assumptions are outlined in the 
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following paragraphs as to what the result will be for certain combinations against the 

adversaries. Ultimately, it was determined through experimentation of all possibilities as 

listed in Error! Reference source not found. and measuring their effectiveness which c

ombinations actually perform best against which adversaries. Furthermore, it was 

assumed that the top performing combinations of ECPs for the covering agent strategy 

would outperform the control strategies. 

When designing the ECPs, it was assumed that certain combinations would perform 

best against certain adversary strategies. For the random adversary, the combination of a 

chain of one of the soft-limit ECPs followed by either the lue or plue would outperform 

other combinations. For the waiting strategy, the triple combination of the hl, followed by 

pb, and terminating in either the lue or plue ECPs would outperform other combinations. 

Finally, for the statistical adversary, one of the soft-limit ECPs followed by the rnd ECP 

was designed to perform the best in comparison to other combinations. 

For the third and fourth research question, the performance of the agent strategies 

will be analyzed based upon the variables of the problem such as graph topology, number 

of agents and adversaries, and K. The exact variables will be described in the next 

section. 

Experimental Design 

The experimental design was to run simulations of each agent strategy against 

adversary strategies under a range of different scenarios. Variables of each scenario 

were: One of six graph topologies as shown in Figure 15 from (Almeida, et al., 2004, p. 

480); the ratio of the number of agents to vertices 𝑁1 ∈ {5%, 10%, 15%, 20%, 25%} and 

the ratio of the number of adversaries to vertices 𝑁2 ∈ {5%, 10%, 15%, 20%, 25%} from 
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Portugal & Rocha (2013, p. 330); and the attack interval based on the number of agents 

and the length of the approximate TSP cycle of the graph 𝐾 ∈ {
1

8
×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
,

1

4
×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
,

1

2
×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
, 1 ×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
, 2 ×

𝑇𝑐𝑦𝑐𝑙𝑒

𝑛
}, where Tcycle is the length of the approximate shortest TSP 

cycle of the graph (factoring in edge weights) and n is the number of agents (Sak, 

Wainer, & Goldenstein, 2008, p. 130). Thus, there will be 6 × 5 × 5 × 5 = 750 

scenarios.  

The chosen graphs characterize six classes of environment for the agents. The 

Circular and Corridor graphs are the simplest and can represent patrolling a perimeter and 

hallway, respectively. The Grid graph can approximate a warehouse where much of the 

environment is uniform but with a small but complex area where coordination occurs for 

humans that work in the warehouse. The Islands graph can represent the computer 

network of a large corporation with corporate offices, a small country with cities, or the 

Internet backbones of the entire world connecting continents together. Finally, graphs 

Map A and Map B represent arbitrarily complex environments with Map B differing 

from Map A by in the inclusion of barriers to isolate the graph into four areas. 

Figure 15 - Graph Topologies 
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Information on these graphs have been computed and are listed in Table 1 below. Note 

that approximate TSP was calculated using the Nearest Neighbor Algorithm; finding an 

optimal TSP path is not critical for this research. The TSP length is given in both the 

number of vertices and the sum of the edge weights for the path. 

Graph # Vertices # Edges Approximate 

TSP Length 

(# Vertices) 

Approximate 

TSP Length 

(Edge 

Weights) 

Map A 50 105 63 380 

Map B 50 69 73 512 

Circular 50 50 51 178 

Corridor 49 48 97 392 

Islands 50 84 59 332 

Grid 50 91 58 353 

Table 1 - Graph Details 

Each scenario gives rise to multiple matches over all combinations of the agent 

strategies and adversary strategies, where each of the agent strategies played against each 

of the adversary strategies. A match is composed of X=10 games, each of which has 

different randomly selected agent starting positions and target vertices. Each game runs 

for 𝑅 = 100 × 𝑇𝑐𝑦𝑐𝑙𝑒 timesteps (Sak, Wainer, & Goldenstein, 2008, p. 130).  

Data Analysis 

The effectiveness of agent strategies was calculated from the following 

measurements, all calculated from experiment outputs from each game. The two types of 

measurements are raw and calculated. The raw measurements are the number of attacks 
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and the number of attacks that were thwarted. There are five calculated measurements. 

The first calculated measurement in the attack thwarted ratio, which is the percentage of 

attacks there were thwarted. The next is general effectiveness, which is the percentage of 

target vertices that were not compromised at all. The deterrence effectiveness is the 

percentage of target vertices where no attack was attempted. The patrol effectiveness is 

the percentage of the target vertices that were discovered to be critical by the agents. 

Lastly, the defense effectiveness is the percentage of initially thwarted critical vertices 

that were never compromised, which differs from the general effectiveness by 

considering that some target vertices may never be attacked (i.e., how effective the 

strategy is at continuing to thwart attacks on a target vertex without it becoming 

compromised later). 

The game measurements were then summarized into a match measurement, which is 

the average and standard deviation of each of the ten game measurements for a match. 

With each match measurement are the variables for that match and its enclosing scenario, 

combined. The graph, number of agents, ratio of agents to vertices, number of 

adversaries, ratio of adversaries to vertices, and K are from the scenario. The agent 

strategy and adversary strategy are from the match. The result is a multi-dimensional 

cube of measurements that were analyzed to determine how the agents perform under 

varying conditions.  

Summary 

The methodology to answer the research questions was to develop the adversaries, 

control agent strategies, and the covering agent strategy along with its ECPs. Experiments 

were run which evaluate the performance of the agent strategies under many varying 
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conditions. The design of the agent strategies has been described along with the new 

concepts of covered vertex covering and ECPs. The experimental design is clearly 

defined and backed up by prior research. Graphs used by previous research were obtained 

and evaluated for their properties such as their approximate TSP length and application to 

real world scenarios.  

The analysis of the data relied on the defined measurements of raw data and 

effectiveness of an agent. The output of an experiment resulted in a n-dimensional cube 

in data that was analyzed across many different slices to determine when and why agents 

perform well or not.  



 

 

47 

 

Chapter 4. 

Results 

Introduction 

The agents are named in a very particular way in the experiment results to describe 

their behavior. First, the control agent strategies are named control_lue, control_plue, and 

control_rnd for least-recently-used-edge, probabilistic-least recently-edge, and random, 

respectively. The covering agent strategy names being the prefix control_ followed by 

the ordered list of the edge chooser primitive names, separated by the “_” character. For 

example, covering_hl_rnd is the covering agent strategy with the hard limit and random 

edge chooser primitives, in that order. The names, descriptions, and examples of these 

edge choosing primitives of the covering agent strategy are listed in Table 2. 

Edge Chooser 

Primitive Name 

Description Terminal? Example 

lue Least Recently Used 

Edge 

Yes covering_lue 

plue Probabilistic Least 

Recently Used Edge 

Yes covering_plue 

rnd Random Yes covering_rnd 

hl Hard Limit No covering_hl_rnd 

pb Peek Back No covering_hl_pb_lue 

sl-vertex Soft Limit (Vertex 

Focused) 

No covering_sl-vertex-plue 
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Edge Chooser 

Primitive Name 

Description Terminal? Example 

sl-edge Soft Limit (Edge 

Focused) 

No covering_sl-edge-rnd 

Table 2 - Covering Agent Edge Chooser Primitive Naming 

  

Control Agent Strategies 

The control agent strategies showed clear differences in their performance against 

the four adversaries, as can be seen in Figure 16. The control-lue agent strategy 

performed much better under the general effectiveness measure than the other two control 

strategies against the random and waiting adversaries. The control-rnd strategy did the 

best against the statistical adversary and worse overall against the other adversaries. The 

control-plue ranked in between the other two control agent strategies in all cases, which 

is not surprising considering that it functions like mixture of the deterministic control-lue 

and nondeterministic control-rnd strategies. Overall, the control-lue agent performed 

best. 
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Figure 16 - General Effectiveness of the Control Agent Strategies 

Basic Covering Agent Strategies 

The basic covering agents are simply the covering agents with a single terminal edge 

choosing primitive. Their performance is illustrated in Figure 17. Like with the control 

agents, the least recently used edge variant (covering-lue) outperformed the probabilistic 

least recently used edge (covering-plue) and random (covering-rnd) variants when going 

against the random, waiting, and hybrid strategies. Unlike with the control agents, the 

covering-plue agent outperformed the covering-rnd when against the statistical adversary.  
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Figure 17 - General Effectiveness of the Basic Covering Agents 

The basic covering agents did not perform as well as their control agent counterparts, 

as can be seen in Figure 18. The additional behaviors that the covering agents add is 

detrimental in all situations when only a single terminal edge choosing primitive is used. 
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Figure 18 - General Effective of the Basic Covering and Control Agents 

Chained Agent Strategies 

Overall 

The effectiveness measurements of all 198 agent strategies against all adversaries are 

illustrated in Figure 19, which has the agent strategies on the horizontal axis but are 

unlabeled. The chart sorts all agents in descending order of their general effectiveness 

average against all adversaries, left to right. The corresponding defense, patrol, and 
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deterrence effectiveness measurements are also shown (also the average against all 

adversaries), showing how they relate to general effectiveness. General effectiveness of 

all agents ranges from about 25% to about 83%, showing a wide disparity in performance 

among the agents overall. General effectiveness is inversely correlated with patrol 

effectiveness such that as patrol effectiveness rises, general effectiveness decreases. 

Defense effectiveness is somewhat noisy but in general lowers along with general 

effectiveness. Deterrence effectiveness is stable and not correlated with general 

effectiveness. 

 

Figure 19 - Effectiveness Range Against All Adversaries 

 

The top performing agents measured by general effectiveness are illustrated in 

Figure 20. This chart shows the agents who score is within 98% of the maximum general 
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essence of what combinations and orderings of edge choosing primitives is optimal. 

Therefore, a strategy was used to pick out the truly optimal agent by also considering the 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Avg. General Effectiveness Avg. Defense Effectiveness

Avg. Patrol Effectiveness Avg. Deterance Effectiveness



 

 

53 

 

number of edge choosing primitives an agent has, in addition to its general effectiveness. 

To facilitate this selection, a simple strategy of choosing the agent with the highest 

general effectiveness and the lowest count of edge choosing primitives was taken. The 

rational for this is that the top performing combinations of ECPs have general 

effectiveness scores that are very close to each other and the absolute highest performing 

agents can have a very large number of ECPs in comparison to similarly performing 

agents with lower numbers of ECPs. However, the larger numbers of ECPs do not 

necessarily mean that these agents are superior. Instead, their slightly higher performance 

is a statistical anomaly and does not capture the true essence of a superior performing 

strategy of an agent with very similar performance but less ECPs. In the case of overall 

agent performance against all adversaries, the covering_hl_pb_rnd combination of three 

edge choosing primitives was selected and is highlighted in Figure 20. While there are 

ten other agents that performed better, they all have four or five edge choosing primitives 

instead of three. Additionally, the general effectiveness of this agent strategy was 

82.20%, which is within 99.82% of the maximum general effectiveness of 83.25% for the 

covering_hl_sl-edge_pb_rnd agent. Therefore, it is argued that the covering_hl_pb_rnd 

(explained in further detail in Appendix A) agent represents the true optimal agent 

strategy, with the chained combination of the Hard-Limit, Peek Back, and Random edge 

choosing primitives; the sl-edge ECP from the covering_hl_sl-edge_pb_rnd agent did 

perform better, but so did the covering_hl_sl-vertex_pb_rnd agent. Thus, it is argued that 

neither the inclusion of the sl_edge or sl_vertex ECPs are critical for identifying the most 

appropriate agent in terms of selecting the optimal combination and number of ECPs for 

an agent. 
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Figure 20 - General Effectiveness Against all Adversaries (Within 98% of Maximum) 
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Against the Random Adversary Strategy 

Against the random adversary, the range of general effectiveness among all the 

agents varies considerably from about 1% to about 69% (see Figure 21). The deterrence 

effectiveness is always 0% for all agents because no behavior on the part of the agent will 

deter the random adversary from attacking. The patrol effectiveness is inversely 

correlated with general effectiveness because discovering more critical vertices (patrol 

effectiveness) comes at the cost of not being able protect critical vertices from even a 

single successful attack (general effectiveness). 

 

Figure 21 - Effectiveness Range Against the Random Adversary 

The top performing agents, as measured by general effectiveness are 
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is simpler than the top two and within 99.85% of the top performing agent. It is not 

surprising that this agent performs well because it covers the graph uniformly and at 

regular intervals unless a critical vertex is in danger of being unvisited for longer than K 

timesteps, in which case it heads directly to that vertex as close as possible to exactly 

after K timesteps have elapsed. The least-recently-used-edge choosing primitive was 

created to counter the random adversary, so it is encouraging that the results indicate its 

effectiveness. Note that the simpler control_lue and covering_lue agents only had a 

general effectiveness score of 44.24% and 26.23%, respectively, showing that by adding 

vertex covering and the hard limit edge chooser, the performance of an agent can increase 

greatly (to 69%). 

 

Figure 22 - General Effectiveness Against the Random Adversary (Within 98% of Maximum) 
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effectiveness is inversely correlated with general effectiveness. The general effectiveness 

measurements for all agents against the waiting adversary has a range of 0.84% to 

94.30%. The control_lue control strategy performed best against the all the control 

strategies with a general effectiveness score of 49%. The base covering strategy 

covering_lue performed best against all the basic covering strategies with a general 

effectiveness score of 49%. 

 

Figure 23 - Effectiveness Range Against the Waiting Adversary 

An interesting result is the correlation of general effectiveness to attack count; 

general effectiveness decreases as the attack count decreases (Figure 24 and Figure 25). 
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Figure 24 - General Effectiveness and Attack Count against the Waiting Adversary 

 

Figure 25- General Effectiveness and Attack Count Scatterplot for the Waiting Adversary 
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its presence in the optimal and all top performing agents is expected and its contribution 

to countering the waiting adversary is proven. 

 

Figure 26 - General Effectiveness Against the Waiting Adversary (Within 98% of Maximum) 
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Against the Statistical Adversary Strategy 

When going against the statistical adversary, the general effectiveness of an agent is 

correlated with the defense effectiveness. The general effectiveness for all agents has a 

range of about 57% to about 92.5% (Figure 26). General effectiveness is inversely 

correlated to attack count (Figure 28 and Figure 29), since the statistical adversary only 

attacks when it predicts it will be successful, a reduce attack count implies that the 

adversary is unable to predict success and hence does not attack. Since lower attack 

counts result in higher general effectiveness scores, an agent performs best by preventing 

attacks in the first place. 

 

Figure 27 - Effectiveness Range against the Statistical Adversary 
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Figure 28 - General Effectiveness and Attack Count against the Statistical Adversary 

 

Figure 29- General Effectiveness and Attack Count against the Statistical Adversary (Scatter Plot) 
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57.29%, respectively, near the bottom of all agents. The only agent which performed 

worse was covering_pb_lue at 56.96%. These low scores are not surprising because these 

agents have very predictable patterns of movement. 
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Figure 30 - General Effectiveness Against the Statistical Adversary (Within 98% of Maximum) 
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Against the Hybrid Adversary Strategy 

The general effectiveness scores against the hybrid adversary vary from 25.07% to 

83.81 and are inversely correlated with patrol effectiveness (Figure 31). General 

effectiveness is correlated with the attack count; agents that evoke the adversaries to 

attack more have higher scores of general effectiveness (Figure 32). 

 

Figure 31 - Effectiveness Range against the Hybrid Adversary 
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Figure 32 - General Effectiveness and Attack Count against the Hybrid Adversary 
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Figure 33 - General Effectiveness Against the Hybrid Adversary (Within 98% of Maximum) 
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Chapter 5. 

Conclusions, Recommendations, and Summary 

Conclusions 

Overall 

The top performing covering agent strategies were covering_hl_lue, 

covering_hl_pb_rnd, and covering_hl_rnd. The most effective agent against the random 

adversary was covering_hl_lue, against the statistical adversary is was covering_hl_rnd, 

and covering_hl_pb_rnd performed best against the waiting and hybrid strategies as well 

as best overall (Table 3). 

Adversary Agent Name Agent Description General Effectiveness 

Random covering_hl_lue Hard-Limit, Least-Recently-Used- Edge 69.00% 

Waiting covering_hl_pb_rnd Hard-Limit, Peek-back, Random 94.06% 

Statistical covering_hl_rnd Hard-Limit, Random 92.06% 

Hybrid covering_hl_pb_rnd Hard-Limit, Peek-Back, Random 83.48% 

Overall covering_hl_pb_rnd Hard-Limit, Peek-Back, Random 82.20% 

Table 3 - Top Performing Covering Agents 

The top agent strategies do not employ all edge choosing primitives: only 

combinations of hard-limit, peek-back, least-recently-used-edge, and random were used 

by the top scoring agents. This means that the two soft-limit edge choosers, the vertex 

and the edge focused ones, in addition to the probabilistic-recently-used-edge primitive, 

were not a key factor for maximizing agent performance, as measured by general 

effectiveness. As described in Table 4, the hard-limit primitive was effective against all 

adversaries, the peek-back primitive was effective against the waiting and hybrid 
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strategy, and the random primitive was effective against waiting, statistical, and hybrid 

adversaries. 
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covering_hl_lue (Against Random) X  X  

covering_hl_pb_rnd (Against Waiting & Hybrid) X X  X 

covering_hl_rnd (Against Statistical) X   X 

Table 4 - Edge Choosing Primitive Usage in Top Covering Agents 

When the results of all experiment variables are averaged, the top performing agent 

was covering_hl_pb_rnd with a general effectiveness of 83.20%, which is also the best 

agent for the hybrid adversary (Figure 34). Closely following that are the 

covering_hl_rnd and covering_hl_lue agents, with general effectiveness scores of 

81.32% and 77.20%, respectively. The control agents scored below those and the basic 

covering agents scored even lower. Basic covering agents with only a single terminal 

edge choosing primitive perform worse than their corresponding control agents; the 

covering edge choosing agents only show high performance when used with multiple 

primitives. 
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Figure 34 - Overall General Effectiveness of Control, Basic Covering, and top Covering Agents 
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Figure 35 - General Effectiveness of Control, Basic Covering, and top Covering Agents against Adversaries 

By Adversary 

The control_lue agent shows roughly equal performance against all four adversaries, 

while the control_plue and control_rnd performed much better against the statistical 

adversary, less well on the hybrid strategy, and not well against the random and waiting 

adversaries (Figure 36). The basic covering agents (Figure 37) have a similar result, but 
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with lower scores of general effectiveness, a less equal performance of the covering_lue 

agent against all adversaries, and near zero scores of general effectiveness of the 

covering_plue and covering_rnd agents against the random and waiting adversaries. 

 

Figure 36 - General Effectiveness of Control Agents Against all Adversaries 
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Figure 37 - General Effectiveness of Basic Covering Agents Against all Adversaries 

In contrast, as can be seen in Figure 38, the top performing covering agents perform 

equally well against all adversaries. One notable difference is that covering_hl_lue agents 

performs worse against the statistical adversary in comparison to the covering_hl_pb_rnd 

and covering_hl_rnd agents. This is not surprising because the covering_hl_lue agent 

moves about the graph predictably while the other two agents do not. 
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Figure 38 - General Effectiveness of Top Covering Agents Against all Adversaries 

By Graph 

To analyze the effect that graphs have on agent performance, the results from each 

game were grouped by graph and the general effectiveness against all adversaries were 

averaged. The analysis of the agents for the graphs are grouped into three categories: 

control agents, basic covering agents, and the top performing covering agents. The 

analysis shows that the top performing covering agents have both higher scores of 

general effectiveness as well are more consistent performance for all the graphs. 

When comparing the general effectiveness of the control agents, the control_plue 

and control_rnd agents perform about equally no matter graph is used (Figure 39). 
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However, the control_lue performs much better on the corridor graph than the others; it 

also tends to outperform the other control agents on all graphs except for graph A. 

 

Figure 39 - Control Agent General Effectiveness by Graph 

The basic covering agent strategies have the same general result, but with lower 

general effectiveness scores overall and a lower score specifically in the “Grid” graph 

(Figure 40). Thus, the control agent strategies perform better than the basic control 

agents, overall, regardless of the graph. Thus, there is a cost for the more complex 

behavior of the covering agents. However, it will be shown next that this cost is 

recovered and the general effectiveness scores are greatly increased when certain 

combinations of ECPs are used. 
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Figure 40 - Basic Covering Agent General Effectiveness by Graph 

The top performing covering agents have a very different performance characteristic 

than the control and basic covering agent strategies; they show very uniform and much 

improved performance no matter which graph is being used (Figure 41). One slight 

deviation is that the covering_hl_lue agent underperforms in the “A” graph (and to lesser 

extend the Islands, B, and Grid graphs) than the covering_hl_pb_rnd and 

covering_hl_rnd do. As a whole, though, these top performing covering agents handle 

each of the graphs extremely well, much better than the control and basic covering agent 

strategies. 
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Figure 41 - Top Covering Agent General Effectiveness by Graph 

Recommendations 

Limitations 

There are three major limitations in this work. The first limitation is that only four 

adversaries (random, waiting, statistical, and hybrid) were used. While the random, 

waiting, and statistical adversaries have their provenance in previous research (Sak, 

Wainer, & Goldenstein, 2008), other adversaries are possible that are more sophisticated 

than the random, waiting, statistical, and hybrid adversaries. The effectiveness of the 

proposed agent strategies against other adversary types has not been considered here. 

The second limitation is that other ECPs could be designed that perform better than 

the ones used in this work. Each ECP of this work have low time and space requirements, 
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basically linearly as a function of either the number of edges or critical vertices. Thus, 

these ECPs execute efficiently in terms of time and space. It is feasible that other ECPs 

could be designed that perform better though they may be less efficient. An example may 

be an ECP that uses neural networks to monitor their target vertex and learn when the 

most optimal time to attack is. 

The third limitation is the graphs. While the graphs are from previous research 

related to this problem (Almeida, et al., 2004), it is not well understood how agent 

performance depends on graph topology generally. The experiments have been limited to 

these select graphs. Questions of dependence of strategy effectiveness on graph topology 

has only been touched upon. 

Problem Variations 

 A potential variation of the problem is to limit the agents’ knowledge of the attack 

interval, K. In this work, the fixed attack interval was known to the agents. Instead, the 

attack interval would be given to the agents as a range as possible values, where each 

adversary’s attack interval lies within this range (the present research considers the trivial 

range [K, K]). The attack interval for an adversary 𝑎 is 𝐾(𝑎) ∈ [𝐾𝑙𝑜𝑤, 𝐾ℎ𝑖𝑔ℎ], where 𝐾𝑙𝑜𝑤 

and 𝐾ℎ𝑖𝑔ℎ are fixed values that the agents know (they are experimental settings). Hence 

the agent does not know exactly how long it has before a targeted vertex will be 

compromised, though this time period is constrained. In all the agent designs in this 

work, a notion of a return-to-vertex deadline was used to inform the agent when it should 

return to a vertex to minimize successful attacks on it. In some agents this is a hard 

deadline while in others it is soft. In either case, the agent is not sure of which timestep it 

must return to a critical vertex to thwart an attack on it.  
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When a hard deadline is required, such as against the waiting adversary, the agent 

must return to the vertex at the lower bound of the range, to be certain that an attack is 

thwarted. However, doing so will not give the agent any information regarding the attack 

interval 𝐾(𝑎) for adversary a. Instead, the agent maintains a range [𝐾𝑙𝑜𝑤(𝑎), 𝐾ℎ𝑖𝑔ℎ(𝑎)] 

for each adversary a that it covers and may use strategies to narrow this range. As it does 

so, it can hone itself to better protect the vertices of each adversary. This approach will 

cause at least one attack to succeed; the agent should find just one critical vertex and play 

this game against it alone until the value of K is known. After that, the agent can explore 

the graph and find other critical vertices. However, this approach is not as simple as it 

may seem because agents cannot stay on a vertex for succeeding time steps, an incident 

edge must always be chosen. Thus, the agent strategy must account for the edge weights 

to know the actual durations it may be away from a critical vertex. So, playing this game 

against a single adversary on a particular critical vertex will not necessarily make K 

known. It would, however, allow the range of values of K to be reduced in length after 

succeeding games against multiple adversaries at their critical vertices. Because no ECPs 

which used the soft deadline were used by the top performing agents, the implementation 

with soft deadlines will not be considered.  

Another problem variation is to further restrict the amount of communication 

between the agents. In this work, the only information that is shared between the agents 

are the critical vertices. This could be removed and replaced with a flag that an agent can 

leave at a critical vertex, which other agents take note of when arriving at that vertex. 

Thus, agents could only learn of new critical vertices by visiting a vertex and checking 

the flag. In practical terms, the original problem statement could be thought of each agent 
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broadcasting the critical vertices it has discovered by using electromagnetic emissions 

that are received by all agents as soon as a critical vertex is discovered. However, the 

assumption that this is possible in real world situations is not necessarily valid. Thus, in 

its place, physical markers could be left at vertices by the agents as they travel to them. 

The basic effect on the agents is the same, the agents learn of the critical vertices over 

time, but the rate at which they learn the critical vertices happens more slowly instead of 

instantaneously. This could have applications in practical scenarios such as when the 

graph is a computer network or a location where electromagnetic propagation is severely 

limited. 

A problem variation in the other direction than above is for agents to know the graph 

topology from the start as well as which vertex each agent is at for each timestep. 

However, no other information is shared such as the critical vertex set or any intentions 

of the other agents. Thus, the agents would not directly know which vertices are critical 

or covered by other agents, such as in this work. Instead, this information would have to 

be inferred by the agents, such as by monitoring the behavior of other agents. The agents 

could also patrol the graph to thwart attacks and gain direct knowledge of which vertices 

are critical and apply this knowledge to their inferences. It is interesting to consider that 

the agents would monitor each other to infer each other’s state and intentions and to 

cooperate effectively from the inferred knowledge. 

Summary 

This work on the domain of multi-agent adversarial patrol problems, which is 

applicable to interesting practical applications, resulted in the creation of novel agent 

strategies that outperform agent strategies of previous work. The information available to 
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the agents was purposely kept minimal, with the only shared information between them 

being the critical vertices. The agents had very limited access to the environment to 

reproduce the limited information that would be available to such agents in a practical 

setting. 

The goal of creating new heuristic agent strategies to counter each of the adversaries 

was achieved. Additionally, a new universal (or general) agent strategy was designed and 

found through experiments and analysis of results to be capable of countering all 

adversary types in the graphs that were considered. The three research questions were 

answered on how to develop effective agent strategies against each of the adversaries: 

that a general agent strategy could indeed be created, how these agents perform under a 

variety of conditions, and which agent strategies performed better and why. 

The methodology was derived directly from the research goals and questions, 

resulting in the design of three adversary strategies as well as a fourth that is hybrid of 

those three. This hybrid strategy is a new approach that drives more sophisticated agent 

strategy design. The problem formulation resulted in an approach to agent design that is 

based on a new chained component architecture, resulting in almost 200 new agent 

strategies by permutations of these components. Additionally, the new concept of agent 

critical vertex covering was introduced and designed into each of these new agent 

strategies. This covering capability allows the agent strategies to maximize protection of 

critical vertices while also maximizing patrolling for other vertices subject to attack in an 

efficient and emergent manner. 

The experiment design was created with inspiration from previous research in this 

problem domain, to provide a clear lineage of the significance of this work. New 
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performance metrics were created that provide better insight into the nature of an agent’s 

functioning under a very wide range of experiment scenarios. The wide range of 

experiment scenarios were broken down into sub-categories that enabled the results to be 

evaluated from many different viewpoints to provide insight under what conditions an 

agent does or does not perform well. To produce these results, millions of simulations 

were run, with each simulation having a duration of approximately tens of thousands of 

timesteps. The experiment took approximately 4 days to run a 32-core CPU machine; the 

experiment software was designed to execute in a highly parallel manner. 

Three categories of agent strategies were created: control, basic covering, and 

chained covering. The three control agent strategies were designed to counter the random, 

waiting, and statistical adversaries. The three basic covering strategies use critical vertex 

covering and consist of only a single terminal ECP; each basic covering agent designed to 

counter the random, waiting, and statistical adversaries. However, the basic covering 

strategies did perform as well as the control strategies. It appears that adding critical 

vertex covering with only a single terminal ECP shows no advantage and in fact is 

detrimental. Lastly, the almost 200 chained covering agent strategies, each one a 

permutation of all possible ECP combinations.  

Three of the chained covering agent strategies were notable as outperforming all 

others under all experimental variables. One of them was superior too all other agent 

strategies, including the control and basic covering ones. That agent strategy was 

covering_hl_pb_rnd, which is the chain of the following ECPs, in order: Hard-Limit, 

Peek-Back, and Random. This agent outperformed all other agents under the performance 

measures. It also performed roughly equally well no matter which adversary, graph, or 



 

 

82 

 

other experiment variables change. Thus, this agent strategy appears to be universal and 

consistently performant in all situations.
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Appendix A 

General Agent Strategy 

The General Agent strategy of this work was the agent composition of ECPs that 

outperformed all other agent strategies in terms of general effectiveness. This agent uses 

vertex covering to assign each critical vertex to exactly one agent. Each agent takes sole 

responsibility for protecting its own critical vertices and avoids the critical vertices of 

other agents. The General Agent Strategy is composed of a chain with the following 

ECPs, in order: Hard-Limit, Peek-Back, and Random. This particular combination of 

ECPs (in this specific order) performs the best against all the adversaries: random, 

waiting, statistical, and hybrid. When this agent arrives at a vertex and must choose an 

incident edge to travel to next, it first asks the Hard-Limit ECP to choose an edge. If the 

Hard-Limit ECP declines to choose an edge, the Peek-Back ECP is then asked to choose 

an edge. If it also declines to choose an edge, the Random ECP will always choose an 

edge. The combination of these three ECPs performed the best among all other 

permutations of ECPs. Each ECP will be given a brief description, below. 

The Hard-Limit ECP will only choose an edge if it heuristically determines that it 

must immediately begin travelling back to a covered vertex to reach it before K timesteps 

have elapsed since last leaving it. If that situation occurs, the ECP will pick the edge that 

will cause the agent to return to vertex the quickest. If there are multiple vertices that fit 

the criteria, it will pick the vertex that it can reach the soonest. If the criteria are not met, 

the Peek-Back ECP follows. 

The Peek-Back ECP will check every vertex once by departing it along an incident 

edge and then, after arriving at the other vertex, immediately return back to the original 
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vertex along the same edge. It does this to catch a waiting adversary in the act of 

attacking the vertex after leaving it. Once a vertex has been checked, it is never checked 

again and so if the agent travels to a checked vertex again in the future, the Random ECP 

follows. 

The Random ECP randomly picks an incident edge of the current vertex. However, it 

will avoid choosing an edge whose endpoint it knows to be a covered vertex of another 

agent. In the case where all incident edges have endpoints that go to a covered vertex of 

another agent, this ECP will choose one of them randomly. 
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