3 research outputs found

    Advancing WSN physical security adopting TPM-based architectures

    No full text
    Cyber Physical Systems typically operate unattended in hostile outdoor environments. A lot of effort has has been made to protect the communication between sensing nodes and the processing infrastructure. However, with regards to physical protection of a node, assessing the integrity of its hardware/software is a challenging issue. In this paper, we propose and evaluate a node architecture which makes use of Trusted Platform Module (TPM) to perform cryptographic operations in a trustworthy manner. TPM builds a chain of trust which enforces a trustability relationship among the node's components. In such context, the node will function only if all the hardware and software configurations have been verified by means of cryptographic operations. Moreover, using tamper resistant hardware we will ensure that the cryptographic keys do not leave a secure perimeter

    Energy Saving Mechanisms in the Security of the Internet of Things

    Get PDF
    Energy consumption is one of the priorities of security on the Internet of Things. It is not easy to find the best solutions that will reduce energy consumption, while ensuring that the security requirements are met. Many of the issues that have been presented so far have covered the basics of security, such as the basic principles of encryption, extension environments, target applications, and so on.This paper examines one of the most effective energy-efficiency mechanisms for providing Internet-based security services. By studying techniques that enable the development of advanced energy-efficient security solutions, we take a closer look at the ideas that have already been introduced in this area. In this study, not only the security issues, but also the energy impacts on solutions have been considered. Initially, the amount of energy related to security services is introduced. Then a classification is proposed for energy efficient mechanisms on the Internet of Things. Finally, the main drivers of the impact of energy saving techniques are analyzed for security solutions

    Cryptographic extensions for custom and GPU-like architectures

    Get PDF
    The PhD thesis work deals with the exploration of hardware architectures dedicated to cryptographic applications, in particular, solutions based on reconfigurable hardware, such as FPGA. The thesis presents the results achieved for the acceleration of operations essential to homomorphic cryptography, specifically, the integer multiplication of very long operands, based on the Schonhage-Strassen algorithm and implemented with an ad-hoc FPGA hardware. Then, the thesis reports the exploration of novelty approaches for cryptographic acceleration, based on vectorial dedicated architectures, software programmable, with the corresponding implementation of symmetric and public key operations (namely, AES encryption and Montgomery multiplication) with improved performances
    corecore