
Tesi di Dottorato

Università degli Studi di Napoli “Federico II”

Dipartimento di Ingegneria Elettrica

e Tecnologie dell’Informazione

Dottorato di Ricerca in

Information Technology and Electrical Engineering

Cryptographic extensions

for custom and GPU-like

architectures

Domenico Argenziano

Il Coordinatore del Corso di Dottorato Il Tutore

Ch.mo Prof. Daniele Riccio Ch.mo Prof. Alessandro Cilardo

A. A. 2016–2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Università degli Studi di Napoli Federico Il Open Archive

https://core.ac.uk/display/189606509?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

“To my parents,
to my sister and my family,

to my friends
and to Erminia, as well.”

Acknowledgments

First, I want to express my sincere gratitude to...

my tutor Alessandro Cilardo, for his great patience with me, my col-
leagues Mirko Gagliardi and Innocenzo Mungiello for their helpfulness,
my temporary co-tutor Clemente Galdi for his invaluable contribution,
Flemming Christensen for having allowed me to make an interesting
abroad experience.

v

Contents

Acknowledgments v

List of Figures ix

Introduction xi

1 Custom accelerator for homomorphic encryption 1

1.1 Applications . 2
1.2 Background . 5

1.2.1 Mathematical background 5
1.2.2 Previous works . 15

1.3 Approach followed . 16
1.4 Architecture of the FPGA-based accelerator 22

1.4.1 Data distribution and exchange pattern 25
1.4.2 FFT-64 unit . 26
1.4.3 Internal Bank Memory 29
1.4.4 Modular multiplier 30
1.4.5 Data route . 30

1.5 Implementation and performance 31

2 GPU extension for Montgomery Multiplication 33

2.1 Modular Multiplication 33
2.1.1 Montgomery modular reduction and multiplication 33
2.1.2 Barrett modular multiplication 35
2.1.3 Camparison with Montgomery reduction 35

2.2 Previous works . 37
2.3 From the algorithm to the GPU-like datapath 38

2.3.1 The Nu+ GP-GPU datapath 38
2.3.2 Algorithm GPU-ization 43

vii

viii CONTENTS

2.3.3 Data dependencies and access patterns 48
2.3.4 Data movement and bandwidth 48
2.3.5 Width and number of lanes 50
2.3.6 Predicated execution 50
2.3.7 Integration of the Montgomery unit 50
2.3.8 Definition of an extended Instruction Set 51

2.4 Details of the Montgomery functional unit 51
2.4.1 Data arrangement 51
2.4.2 Carry-less multiplication 52
2.4.3 Carry recovery and final subtraction 53

3 AES extensions for GPU 57

3.1 Algorithm . 57
3.2 Architecture . 58

3.2.1 Resource-friendly implementation 58
3.2.2 Optimizations . 61
3.2.3 Dedicated HW implementation 62
3.2.4 Inverse cipher . 62

4 Experimental results 65

4.1 Montgomery multiplication 65
4.2 AES-128 encyption . 67

Conclusion 69

List of Figures

1.1 Homomorphic evaluation of decryption function. In (a) is
presented the original boolean function, while in (b) the
corresponding arithmetic function evalued on the cipher-
texts. 10

1.2 Butterfly scheme of the Radix-2 FFT. 21

1.3 Architecture of a 64K FFT processing element. 23

1.4 Data distribution. 24

1.5 Hypercube topology for a system comprising four Pro-
cessing Elements. 24

1.6 Hypercube topology for a system comprising eight Pro-
cessing Elements. 25

1.7 Architecture of the baseline Radix-64 unit [1]. 26

1.8 Architecture of FFT64 unit. 28

1.9 Architecture of banked memory buffer. 30

2.1 Overall view of Nu+ datapath 39

2.2 Predicated execution using masks. 41

2.3 Inner loop: first iteration 45

2.4 Inner loop: other iterations 46

2.5 Inner loop iterations . 46

2.6 GPU-like pipeline. Only the functional units of interest
are shown. 47

2.7 Montgomery unit architecture. 49

2.8 Data interleaving using INTLVL and INTLVH instruc-
tions (case of operands occupying two registers). 52

2.9 Data interleaving using INTLVL and INTLVH instruc-
tions (case of operands occupying four registers). 52

2.10 First iteration of carry less multiplication. 53

2.11 Second iteration of carry less multiplication. 53

ix

x LIST OF FIGURES

3.1 Row rotate. 61
3.2 Column mixing stage. 62
3.3 GPU pipeline for resource-friendly AES implementation. . 63

Introduction

T
he need for information security has increasily become a serious
concern in the era of widespread digitalization, mobile network-

ing and Cloud-based services. Even bigger concerns have arisen since
Cloud computing and Big Data paradigms for storing, processing and
manipulating digital data have achieved wide diffusion on a large scale
and a large class of distributed applications over the past two decades.
Traditional security techniques have focused mostly on the storage and
transport of information, e.g. by encrypting files, authenticating servers
and setting up secure channels. In Cloud computing scenario, even these
techniques are starting to appear insufficient, since the peculiar aspect
of Cloud computing is outsourcing data storage and computation to a
third-party remote resource provider, which, in turn, will allocate pro-
grams and data over a large network of machines, with little to no con-
trol by data owners. Certainly, data can be stored and transmitted
in encypted form, but if it has to be processed, then data should be
in unencrypted form. In this case, the customer must trust the Cloud
service provider not to leak, maliciously or unintentionally, confidential
data while also preserving data integrity against illicit manipulations.
The ideal solution would be a tecnique which would allow to carry out
computation on encrypted data. This, which could seem like an im-
possible task, can be actually achieved using homomorphic encryption,
which actually allows computation to take place on encrypted data on
the server side. While existing encryption schemes, such as RSA, were
already known to be at least partially homomorphic, it is only with the
seminal work of Craig Gentry in 2009 that a fully homomorphic scheme
was finally devised. An alternate technique is that of Yao’s Garbled Cir-
cuits [2] and all derived techniques, also including hybrid approaches.
Unfortunately, these schemes come with a prohibitively high computa-
tional cost which prevents them to be practically used in any real sce-

xi

xii Introduction

nario. Nonetheless, noticeble progresses have been accomplished from
the algorithmic point of view, reducing time complexity and, hopefully,
further improvements may come in the future, which will make homo-
morphic encryption more practical. Even in that case, software and
hardware optimization techniques are still needed in order to make its
implementation feasible.

When we consider more standard cryptographic primitives, their
computational cost, even though more reasonable, can still be quite high,
especially in the case of public key cryptography. Such cost is often re-
garded as an undesired overhead, since some computing resources have
to be taken away from useful tasks. Indeed, serious security protocols
for Internet were adopted well after Internet itself widespread diffusion,
when security threats had already became a major concern.

This thesis work will deal with the exploration of acceleration so-
lutions for cryptographic operations, both those more advanced, such
as homomorphic encryption, that more standard ones, such as AES for
symmetric key cryptography and RSA and Elliptic Curves for public key
cryptography. Given the peculiar nature of cryptographic operations, it
is usually agreed that some kind of hardware acceleration is usually
needed, since it can yields far better performances that software-only
approaches based on commodity processors. Indeed, most security li-
braries (e.g. OpenSSL) tries to exploit special extensions, such as SIMD
instructions, present on commercial CPUs, like Intel AVX.

Current trends in computing architectures offer a variety of solutions
for acceleration, ranging from general-purpose multi/many-core pro-
cessors to Graphics Processing Units (GPUs) and Field-Programmable
Gate Arrays (FPGAs).

FPGAs have a large potential for security-related processing and
have proved to be an effective platform for cryptographic processing [3]
as cryptoalgorithms have peculiar characteristics, like integer compu-
tation, bit-level manipulation, etc., that make standard platforms like
CPUs and GPUs less competitive. On the other hand, hardware recon-
figurability allows the designer to customize the system possibly based
on specific parameters, e.g. a cryptographic key, making FPGAs an ideal
platform for cryptographic acceleration [4, 5, 6] as well as for cryptan-
alytic purposes [7, 8, 9]. FPGA platforms have also been explored as
a secure compute/storage environment [10, 11, 12] as well as for im-
plementing special security-related features like Physically Unclonable

Introduction xiii

Functions [13].
The thesis presents the results achieved for the acceleration of oper-

ations essential to homomorphic cryptography, specifically, the integer
multiplication of very long operands, based on the Schonhage-Strassen
algorithm and implemented with an ad-hoc FPGA hardware. Then,
we report the exploration of novelty approaches for cryptographic ac-
celeration, based on vectorial dedicated architectures, such as General
Purpose GPU, which are software programmable, with the correspond-
ing implementation of symmetric and public key algorithms (namely,
AES encryption and Montgomery multiplication) exploting dedicated
units for improved performances.

The outline of the thesis is the following:

Chapter 1 presents the design of a custom accelerator for homo-
morphic encryption. More specifically, such accelerator is intended to
perform high order number theoretic FFT, which is the main building
block for very long operand multiplication. Such multiplication is the
common bottleneck of homomorphic encryption schemes.

Chapter 2 describes an implementation of the Montgomery mul-
tiplication algorithm, widely used in common asymmetric schemes
(such as RSA) based on the extension of a GPU-like core with special
function units, exporting such new functionalities through an extended
ISA which allowed to rewrote the original algorithm exploiting the
hardware acceleration.

Chapter 3 describes extensions for a GPU-like core in order to
accelerate AES-128 symmetric encryption. Two versions of the
algorithm implementation are reported, the first which tries to ex-
ploit the Scrathpad memory already present in the core, the latter
using completely ad hoc units, in order to achieve the best performances.

Chapter 4 reports the experimental results for the solutions pre-
sented in Chapter 2 and Chapter 3.

Chapter 1

Custom accelerator for

homomorphic encryption

S
ince its widespread usage and popularity as a distributed platform
for storing and processing heterogeneous data, Cloud computing

environment [14, 15, 16] has posed serious problems from the point of
view of security, since data confidentiality on a remote server cannot
be reliably verified by the customer. This is not a concern when only
the transmission or storage of data is taken into consideration, since it
can be well protected using several cryptographic techniques. Specif-
ically, symmetric key cryptosystems are usually used to ensure data
confidentiality, while public key ones can satisfy integrity and authen-
ticity requirements. This cannot be immediately applied in the case of
executions of programs on confidential data, since such data cannot be
encrypted. Therefore, in such case, the customer would have no choice
but to trust the service provider not to violate data confidentiality nor
to illicitly manipulate such data.

A promising answer to this concern may come from homomorphic
encryption (HE). Introduced in its full form by the seminal work by
Craig Gentry [17] just a few years ago, this sophisticated cryptographic
technique allows arbitrary computation to take place on encrypted data,
with little chance for the server performing the computation of access-
ing user data in plain form. Beside Gentry’s scheme, based on the
properties of ideal lattices, various alternative solutions have been pro-
posed, the most relevant being the van Dijk, Gentry, Halevi and Vaikun-
tanathan’s (DGHV) scheme over the integers, and the Brakerski and

1

2 FHE Accelerator

Vaikuntanathan’s scheme [18] based on the Learning with Errors (LWE)
and Ring Learning with Errors (RLWE) problems [19]. While in their
current instantiations homomorphic primitives handle information and
operation at a very low level, i.e. at the bit level, in a perspective
scenario HE can act as an enabling tool for a number of different appli-
cations, including multiparty computation, where several parties process
a common, public function on their inputs while keeping their individual
inputs private, medical applications, allowing patient records to remain
confidential while being processed in the cloud; financial applications,
electronic voting, etc. Despite its great potential, however, homomor-
phic encryption suffers from a high computational cost, both in terms
of time and memory occupancy, which currently prevents its practical
use.

In that respect, as implied by our introductory comment, the avail-
ability of dedicated FPGA-based acceleration in server settings might
play a key role. Motivated by both the security challenges and emerging
compute technologies of today’s cloud scenarios, this chapter we present
the architecture and FPGA-based implementation of a dedicated hard-
ware accelerator addressing the prohibitive computing demand of ho-
momorphic encryption. In particular, this chapter will describe a highly
customized FPGA accelerator implementing ultralong-integer multipli-
cation, the main performance bottleneck in most homomorphic encryp-
tion schemes. In the following, we’ll present an implementation based
on an Altera’s Stratix V FPGA platform. The experimental results
collected from the hardware synthesis show significant improvements in
terms of execution time –under comparable hardware cost– against al-
ternative solutions previously presented in the technical literature.

1.1 Applications

Before dwelling in the technical details of both homomorphic encryption
and our proposed accelerator, we will briefly review some use cases which
can greatly benefit from the use of such cryptographic system.

Delegation of computation This is the most immediate and obvious
use case for homomorphic encryption. Nowadays, several possible dele-
gation scenarios have emerged, ranging from the provisioning of virtual
machines and platforms to remote data storage and applications, such

1.1. APPLICATIONS 3

as Google Apps. All these kinds of services share the risk of being phys-
ically located outside the control of the customer. Using homomorphic
encryption, the customer sends to the service provider an encrypted
version of his software and data. The code included in the customer
package is then executed on the remote server in encrypted form and
when its execution is completed, the encrypted results are sent back to
the customer, who retrieves the plaintext result by decrypting with the
secret key.

Secret Query Evaluation If a company needs to store a database
using a Cloud service, it has to trust such service provider both for the
privacy of database content itself and of the queries the customer is
going to perform on that database. That is, the service provider, not
only has access to the database as a plaintext, but it can also log any
customer query, with detail about the specific search and its time. While
it is possible, with conventional cryptography, to hide the query and its
result from an external adversary by using authentication and secure
channels. Nonetheless, in some scenario, the customer may want to hide
the query and its result from the Cloud provider itself and, optionally,
he may wish to hide the content of the database itself. An example of
the first situation is a classic Google query, where the searched database
is obviously not private but the user may desire to hide the content
(and results) of his/her search. An example of the second case is when
the database contain medical record, which are sensitive data and are
therefore better stored encrypted.

Medical records private access This scenario represents the most
strict version of the one in the previous paragraph. Patient records
should be stored in encrypted form given the sensitive nature of such
data. Homomorphic encryption can allow to perform queries on the
database in encrypted form, with result decrypted by the user once it
has been received. Users are usually medically doctors, that may wish
to access records remotely, for diagnosis, monitoring and other tasks.
Additionally, it should be possible for patients to control which persons
he wants to share his medical history with.

Mobile Agents Using an homomorphic cryptosystem in order to pro-
tect mobile agents can be considered a special case of delegation. Sim-

4 FHE Accelerator

ilarlty to the delegation case, mobile code and related data are homo-
morphically but in this case their are not just sent to a single server, but
are passed from one computing node to another. This scenario canbe
useful for data collection, where the customer is interested in computing
some result which depends on data coming from different sources. Each
source (node) executes the encrypted code adding their own input data,
computing a new intermediate result without revealing their input. Only
the final recipient (the customer) will be able to decrypt the final result.

Multi-Party Computation Multi-Party (MP) computation proto-
cols allow two parties or more parties to compute a public function over
secret input data in a way that prevent any party to know the secret
input share hold by any other party. This can be achieved with our
system as sketched in the Mobile Code use case. In the MP scenario all
participants act as both information provider and information recipient.
An advantage of our system over the approach of the garbled circuits [2]
is that the garbled circuits require much more communication between
the interacting parties to generate and exchange the function represen-
tation.

E-Voting Electronic Voting is one of the earliest and most widely
studied application field to have used homomorphic (mostly partially
homomorphic, such as ElGamal) encryption to achieve vote privacy. In
an election scenario, the homomorphic encryption may act as a powerful
tool that enable an untrusted third party provider to compute the tally
given the encrypted votes without knowing the content of such votes.
One of the first work is that of Benaloh and Tuinstra [20], who used par-
tial homomorphic encryption to implement verifiable secret ballet elec-
tions where anyone can verify the tally result. A voter employs such
encryption scheme to encrypt his/her vote and as soon as the Polling
Station has collected all votes, they are homomorphically tallied without
disclosing any single vote and the secret key is used only at the end to
decrypt and recover the result for each candidate. One main drawback
is that a zero knowledge proof has to be supplied as a proof of valid-
ity. H. Jonker et al. [21] underline how fully homomorphic encryption
schemes could be a significant improvement in e-voting systems, both
supporting addition and multiplication and also preserving the structure
of plaintexts.

1.2. BACKGROUND 5

Zero-knowledge proof Zero-knowledge proof is an important prim-
itive of security protocols which enable one party to prove to another
party that a certain statement is true without disclosing any additional
information, that is, if the first party needs private information for such
proof, it is not disclosed to anybody. It was first introduced by Gold-
wasser, Micali and Rackoff in 1985 [22]. Since then, it has received
noticeble attention from the scientic world, given its potential for au-
thentication system. In such a scenario, a user wants to prove his/her
identity to a host by using some secret information (password) without
communicating anything of such secret to the server. In this particular
case, we have a zero-knowledge proof of knowledge.

Gentry himeself shows [17] in his dissertation that homomorphic en-
cryption can be used in the construction of non-interactive zero knowl-
edge (NIZK) proofs of small size.

1.2 Background

1.2.1 Mathematical background

In order to explain the working of a public key homomorphic cryptosys-
tem, we’ll firstly introduce a simple symmetric key scheme.

As encryption key, we choose an odd integer p, such that p ∈
[2η−1, 2η) Each plaintext m is made up of a single bit, m ∈ {0, 1},
and is encrypted as c = pq + 2r +m ⇒ c ≡ (2r +m) mod p, where r
(noise) and q are randomly chosen in suitable intervals, with |2r| < p/2.
A ciphertext c is decripted as m = (c mod p) mod 2.

At this point, we can ask ourselves if this scheme is homomorphic
with respect to some arithmetic operations. Let’s consider then two
ciphertexts, c1, c2, such that c1 = pq1 + 2r1 +m1,c2 = pq2 + 2r2 +m2.
we have that:

• Addition: c1 + c2 = p(q1 + q2) + 2(r1 + r2) + (m1 +m2)

• Multiplication: c1c2 = p(q1q2 + 2q1r2 + q1m2 + 2r1q2 + m1q2) +
(4r1r2 + 2r1m2 + 2m1r2) +m1m2

The previous scheme, which is a symmetric, can be easily turned in a
public key one (still, as a toy scheme with no security guarantee): firstly,
we compute a sequance of integers xi = qip + 2ri, with qi, ri chosen as

6 FHE Accelerator

previously stated. Such sequence will be the public key, while the integer
p will be the secret key. Each xi can be viewed as an encryption of zero,
using the previous scheme. The new asymmetric encryption operation
will be:

• c =
∑
xi +m =

∑
(qip + 2ri) +m = p

∑

qi
︸ ︷︷ ︸

q

+2
∑

ri
︸ ︷︷ ︸

r

+m, where

the summations are intended over a subset of the public key.

Decryption works as before.
As we have shown, we can carry out arithmetic operations on ci-

phertexts and getting them applied to the corresponding plaintexts.
Decryption of a cipher text is correct as long as the noise is smaller
than p/2. Anyway noise grows when we perform additions and multi-
plication; more specifically, addition will roughly double the noise while
multiplication will square it, so the multiplication is usually the main
concern. There are then only a limited number of operations we can
perform before the noise becomes too big and the decryption will yield
an incorrect result. Such an homomorphic scheme is called a somewhat
homomorphic encryption scheme.

Before further analyzing the properties of FHE, we want the sum-
marize the main existent groups of homomorphic schemes.

• Schemes preceding the Gentry’s were essentially only partial or
somewhat homomorphic, supporting limited kind of operations
and, above all, only a limited number of such operations. A signif-
icant example is Paillier’s cryptosystem [23], which supports both
addition and multiplication by a constant. Table 1.1 presents a
non exhaustive list of homomorphic schemes preceding Gentry’s.

• Gentry’s original work [17] presents an homomorphic schemes
based on the properties of ideal lattices and, most importantly, he
introduced the concept of bootstrappability, by which a somewhat
homomorphic scheme obeying certain properties can be turned in
a fully homomorphic one.

• FHE schemes subsequent to Gentry’s work fall into three main
categories:

– Schemes derived directly from Gentry’s ones. Main contribu-
tions to optimization have come from Smart and Vercauteren.

1.2. BACKGROUND 7

Cryptosystem Kind of homo-
morphism

Assumption

RSA [24] Multiplicative Integer factorization
ElGamal [25] Multiplicative Computational/Decisional

Diffie-Hellman
Pallier [23] Additive and

scalar multiplica-
tive

Computationl/Decisional
Composite Residuosity
Class

Goldwasser-Micali [26] Single-bit addi-
tive (XOR)

Quadratic Residuosity

Table 1.1: Partial homomorphic schemes precedent to Gentry’s work

The most secure parameter setting yields a public key size of
2.3 GB.

– Dijk, Gentry, Halevi and Vaikuntanathan’s scheme
(DGHV) [18] over the integers. It is maybe the most
understandable and will be the base for our following
discussion. It has been subject to various optimizations and
a secure parameter setting gives a public key size of about
802 MB.

– Brakerski and Vaikuntanathan’s scheme [19] based on Learn-
ing with Errors and Ring Learning with Errors.

For simplicity’s sake, in the following we’ll focus on the FHE over
the integer. Nonetheless, our accelerator can find application also in
other FHE schemes, since it is not tied to a specific scheme but rather
on the optimization of their common and most expensive arithmetic op-
erations. We will also consider only single bit plaintexts and expressions
containing only additions and multiplications mod 2. This is a common
assumption in most FHE schemes, where operations over plaintexts re-
duce to logical XOR and AND. For this reason, functions over plaintexts
are often referred to as circuits, since they can be expressed as a net of
logical gates. An homomorphic encryption function maps a single bit
plaintext to a very long integer in the ciphertext codomain. The logi-
cal XOR operation therefore will map to integer addition and, likewise,
logical AND will map to integer multiplication. A boolean cirtuit will
correspond to a polynomial function (additions and multiplications) in

8 FHE Accelerator

the ciphertext codomain.

Ageneral fully homomorphic encryption scheme comprises four prim-
itives: KeyGen, Encrypt, Decrypt and Evaluate. It is therefore similar
to a classic public key cryptosystem, with the addition of the Evaluate
function. The Evaluate primitive takes as input a public key pk, a tuple
of ciphertexts c, a circuit C (i.e. a boolean expression) and outputs a
ciphertext co, obtained applying che circuit on the input c. Additionaly,
Evaluate must take measures in order to contrast the noise growth, if
we want to compute arbitrary circuits.

An encryption scheme ξ = (KeyGen, Encrypt, Decrypt, Evaluate) is
correct for a class S of circuits if it is correct for all circuits C ∈ S. It is
fully homomorphic if it is correct for any arbitrary circuit.

An additional consideration is that operations on ciphertexts not
only increase the noise but also the ciphertext size itself. Therefore,
another challenging property we desire is compactness, which informally
means that the size of the ciphertext output of Evaluate does not depend
on the size of the computed circuit. An encryption scheme ξ = (KeyGen,
Encrypt, Decrypt, Evaluate) is compact if there exists a fixed polynomial
bound b(λ), such that, for any key pair (sk, pk), any circuit C and any
finite ciphertext tuple c encrypted with pk, the size of the output of
Evaluate(pk, C, c) is no more than b(λ).

The simple toy scheme we built previously can obviously manage a
limited number of operations; such a scheme is therefore a somewhat
homomorphic encryption scheme. Gentry proved that we can build a
full homomorphic scheme from a somewhat one that can evaluate a
little more than is decryption function; such property is the so called
bootstrappability. In the following we’ll consider an encryption scheme
where the decryption function complexity depends only on the security
parameter λ. To such scheme we add two augmented decription circuits,
both taking a secret key and two ciphertexts, which are firstly decrypted
and then added mod 2 in the first circuit or multiplied in the second.
The set of these two circuits is denoted by Dξ(λ).

Let’s consider a ciphertext c as the encryption of m under the public
key pk1 with secret key sk1. Let (pk2, sk2) be a second key pair. Let
sk1 be the encryption of sk1 under the second public key (given the
previous assumption, each bit of sk1 is encrypted separately) and let c̄i =
Encrypt(pk2, ci) the encryption under pk2 of each bit of the ciphertext
c̄. Then c′′ = Evaluate(pk2,DE , 〈sk1, c̄1, . . . , c̄γ〉) yields the plaintext

1.2. BACKGROUND 9

m encrypted under the new public key pk2. This could seem a bit
obscure but it is a simple consequence of the homomorphic nature of the
scheme: we are considering the decryption function as a boolean circuit
whose input bits are those of input bit are those of sk1 and c. Instead
of calculating directly this function, which whould yield the original
plaintext m, we evaluate it homomorphically through Evaluate, that
is, we consider the polynomial function corresponding to the decrypt
boolean function (as stated before), and instead of the original bits of
sk1 and c, we consider their encryption under pk2. The evaluation of
such fuction, according to the homomorphic property, is an integer which
is the encryption under pk2 of the bit which we would get from evaluating
the original boolean function. Such result would be the plaintext bit m,
but it is actually encrypted pk2. In practice, we removed the original
encryption under pk1 while keeping the encryption under pk2 (as if we
would remove a parcel internal envelope while it is still inside another
external envelope). The procedure is shown in Figures 1.1 (a) and(b).

The overall result is to have reencrypted the original plaintext under
a new key; the current noise is removed and the reencrytped ciphertext
will have just the basic noise of a fresh encryption. This operation could
therefore be considered a kind of refresh.

It is evident that since the decryption function is evalued as any other
function, it contributes to increase the noise contained in the ciphertext.
So the somewhat homomorphic encryption scheme, in order to be boot-
strappable, must be able to support function at least as much complex
as their decryption circuit. Actully, it should support at least one oper-
ation in addition to the decryption circuit, in order to have some elbow
room for useful computation, before having to refresh the ciphertext.
This additional operation must necessary be the multiplication (AND)
since it produces the worst noise growth.

More formally, if ξ = (KeyGen, Encrypt, Decrypt, Evaluate) is an
encryption scheme and Sξ(λ) is the set of all the circuits which are
correct wrt ξ for each value of the security parameter λ, then we say
that ξ is bootstrappable if Dξ(λ) ⊆ Sξ(λ). With Dξ we indicate the
augmented decryption circuit, that is, a decryption plus an addition or
a multiplication.

A somewhat homomorphic encryption scheme In this paragraph
we start to introduce the FHE scheme over the integer of Dijk et al. [18]

10 FHE Accelerator

sk1,, skn c1,, cm

m
(a)

sk1,, skn

c1,, cm

m

(b)

Figure 1.1: Homomorphic evaluation of decryption function. In (a) is
presented the original boolean function, while in (b) the corresponding
arithmetic function evalued on the ciphertexts.

1.2. BACKGROUND 11

by first defining its underline somewhat homorphism. Firstly, we define
the parameters of our scheme

• γ : bit-length of the integers xi in the public key.

• η : bit-length of the secret key p.

• ρ : bit-length of the noise ri.

• τ : cardinality of the public key (number of xi elements).

Such parameters are subjected to the following constraints

• ρ = ω(logλ): protection against brute-force attacks on the noise.

• η ≥ ρΘ(λlog2λ)) : in order to support deep enough circuits to
evaluate the “squashed decryption circuit”.

• γ = ω(η2logλ) : protection against various lattice-based attacks.

• τ ≥ γ + ω(logλ) : to use the leftover hash lemma in the reduction
to approximate gcd.

An additional noise parameter is usually introduced: ρ′ = ρ +
ω(log λ). A possible choice for parameters is ρ = λ, ρ′ = 2λ, η =
O(λ2), γ = O(λ5) and τ = γ + λ. An implementation setting is
γ ≃ 2 · 107, η = 2652, ρ = 39 with a public key size of about802 MB.

We introduce now the somewhat homomorphic en-
cryption scheme after defining the set Dγ,ρ(p) =
{x = pq + r|q ∈ Z ∩ [0, 2γ/p), r ∈ Z ∩ (−2ρ, 2ρ)}

• KeyGen(λ): The secret key p is a η-bit odd integer chosen ran-
domly from (2Z + 1) ∩ [2η−1, 2η).
For the public key, we choose randomly τ elements from the set
Dγ,ρ(p) and relabel them so that x0 is the largest. Repeat until x0
is odd and x0 is even mod p.

• Encrypt(pk, m): We chose a random subset S ⊆ {1, 2, . . . , τ} and
a random integer r ∈ (−2ρ

′

, 2ρ
′

). We output c = [m + 2r +
2
∑

i∈S xi]x0 .

• Evaluate(pk,C, c): apply the circuit function of C to c as opera-
tions over the integers and return the result.

12 FHE Accelerator

• Decrypt(sk, c): m = (c mod p) mod 2 = c−p · ⌊c/p⌉ mod 2
p is odd
====⇒

m = (c mod 2)⊕ (⌊c/p⌉ mod 2).

The encryption function is very similar to that of our toy scheme
with the main variation that now we calculate also the remainder over
x0, which is easily explained. Let’s consider

c = [m+ 2r + 2
∑

i∈S

xi]x0 ⇒ c = m+ 2r + 2
∑

i∈S

xi + kx0,

k ∈ Z⇒ c = m+ 2r + 2
∑

i∈S

(pqi + ri) + k(pq0 + r0)⇒

⇒ c = m+ 2(r +
∑

ri)
︸ ︷︷ ︸

plaintext+noise

+ p(
∑

i∈S

2qi)

︸ ︷︷ ︸

multiple of p

+k (pq0 + r0)
︸ ︷︷ ︸

≡2 mod p

If k is small ⇒ k ≤ τ . That’s why we chose x0 to be even modulus
p, so that it doesn’t hide the parity of m.

Following Gentry’s blueprint, we define a permitted circuit as one
such that ∀α ≥ 1 and any set of integers ≤ 2α(ρ

′+2) in absolute value,
the output is at most 2α(η−4). CE denotes the set of permitted circuits.
It can be proven that the previous scheme is correct for CE . We recall
that a fresh ciphertext has noise at most 2ρ

′−2. if we apply Evaluate
to it with a permitted circuit we have an output with noise at most
2η−4 < p/8. A bound of p/2 would suffice, but this stricter bound will
be useful in the following. Before continuing, we underline that the noise
growth depends mainly by the multiplicative depth of the circuit, that
is the degree of the multivariate polynomial homomorphically computed
by the circuit.

At first glance it would seem possible to use the modular reduction by
x0 to keep the ciphertext size bounded during Evaluate. Unfortunately,
it is not possible since after only one multiplication the ciphertext size
gets much larger than x0 so modular reduction will add a large multiple
of x0 introducing too much noise. Indeed, we have that for a fresh
ciphertext c < x0 and in the worst case c ≈ x0. For simplicity, we
consider a squaring operation of c. Modular reduction is accomplished
by adding an appropriate multiple of x0, that is c′ = c2 + kx0 k ∈ Z;

k is roughly the quotient of c2 by x0 ⇒ k ≈ c2

x0
≈

x2
0

x0
= x0, which is

much larger than the permitted noise. We observe that for bigger x0 we

1.2. BACKGROUND 13

have smaller k. Therefore, we add to the public key more elements like
x′i = q′ip + 2r′i where the r′i are choosen as before but the q′i are larger.
More precisely q′i ∈ Z ∩ [2γ+i−1/p, 2γ+i/p), r′i ∈ Z ∩ (−2ρ, 2ρ)with i =
0, 1, . . . , γ Whenever c get greater than 2γ , we first reduce it modulo x′γ ,
then modulo x′γ−1 and so on down to x′0(decreasing order). Without this
variation, the output of Evaluate on two circuits that represent the same
polynomial will be the same, but with this modification noise could be
bigger in one case than in the other, yielding different outputs.

Scheme security The security of the scheme is based on the assump-
tion of the hardness of the approximate integer greatest common divisors
(approximate GCD). The (ρ, η, γ)-approximate GCD problem is defined
as follow: given a polynomial number of samples from Dγ,ρ(p) for a ran-
dom η-bit odd integer p, find p. Intuitively, the problem consists into
finding p given a polynomial number of near multiples of p.

A fully homomorphic scheme According to Gentry’s approach, a
fully homomorphic scheme can be built starting from a somewhat homo-
morphic one which is also bootstrappable. In order to be bootstrappable,
it should be able to homomorphically evaluate at least a circuit a bit
more complex than the its own decryption cirtuit. It can be proved that
the decryption circuit of the previous scheme doesn’t belong to the set
of permitted circuits. Gentry’s approach is to transform the scheme to
realize a squashed decryption circuit (that is, simpler and, above all,
shallower). The is achieved by adding extra information to the public
key about the secret key, making decryption phase more efficient. The
ciphertext will contain more information in order to help decryption.

We describe then a modified scheme, with a squashed decryption
function. We’ll use three additional parameters: κ, θ,Θ. We add to the
public key a set y = {y0, . . . , yΘ} of rational numbers in [0, 2), so that
there is a sparse subset S of size θ which satisfy

∑

i∈S yi ≈
1
p mod 2. As

secret key, instead of using p we use the indicator vector of S.
The secret key is s and the public key (pk,y).

The modified functions are as follow

• KeyGen:

– Create sk and pk as before. Set xp = round(2κ/p). Choose
a random Θ-bit vector s with Hamming weight θ and let

14 FHE Accelerator

Instance λ ρ η γ · 10−6 τ Θ Public key size

Toy 42 27 1026 0.15 158 144 77 KB

Small 52 41 1558 0.83 572 533 437 KB

Medium 62 56 2128 4.20 2110 1972 2.21 MB

Large 72 71 2698 19.35 7659 7897 10.3 MB

Table 1.2: Concrete parameters for the optimized FHE schemes

S = {i|si = 1}.

– Choose Θ random integers ui ∈ Z ∩ [0, 2κ+1) such that
∑

i∈S ui = xp mod 2. Set yi = ui/2
κ.Each yi is so a posi-

tive number in ¡2 with κ bits after the binary point.

– We get, as previously stated, that
∑

i∈S yi = (1p −∆p) mod 2

with the error ∆p < 2−κ.

• Encrypt : proceeds as before but at the end we do the following
additional steps:

– Compute zi = c · yi mod 2, keeping only n = ⌈logθ⌉ + 3 bits
after the point.

– Output both c and z = 〈z1, . . . , zΘ〉.

• Decrypt : m′ = (c− round(
∑

i sizi)) mod 2.

It can be proved that this modified scheme is still correct for the set
C(PE) of circuits that compute the permitted polynomials, as previously
defined. If DE is the set of augmented decryption circuits, it can also
be prove then DE ⊆ C(PE); that is, E is bootstrappable. We will omit
here such proofs for space reasons.

Optimizations There have been several efforts toward optimizing the
scheme, in order to reduce time complexity and especially the public
key size. Significant optimizations have been proposed by Coron et
al. [27][28]. Their most important contributions are public key compres-
sion and modulus switching Table 1.2 reports the concrete parameters
for the best of such optimized schemes.

1.2. BACKGROUND 15

1.2.2 Previous works

Before describing the approach we followed, in this section we’ll firstly
reviews the existing research works concerning the implementation of
the HE primitives. We are interested here in the so-called Fully Ho-
momorphic Encryption (FHE) [17], allowing arbitrary and unlimited
sequences of operations on encrypted data. A first implementation of
a variant of the original Gentry’s scheme [17] was proposed by Gentry
and Halevi [29]. Their implementation, despite various optimizations
and small-size security parameters, takes more than one second for en-
crypting a single bit on an Intel Xeon server. Recent software imple-
mentations include [30, 31]. An open-source implementation, hcrypt [32]
is available on-line. Another library [33] contains an optimized imple-
mentation that reaches a significant speed-up over the previous imple-
mentation. Several research works concerning FHE computing plat-
forms have looked for alternative architectures, particularly GPUs and
FPGAs. GPUs offer high throughput and efficiency for data intensive
computing, such as vector and linear algebra problems. FHE schemes
can benefit from this architecture, since they are highly parallelizable
with respect to data. FPGA technology offers, on the other hand, the
flexibility of implementing a custom and targeted architecture at a low
cost, as opposed to Application Specific Integrated Circuits (ASICs).
Moreover, several FPGAs include built-in optimized blocks for multiply-
and-accumulate operations, which can be effectively exploited when im-
plementing large multiplication. A recent GPU implementation is pre-
sented in [34], based on NVIDIA GTX 690. It reaches spead-ups of 174,
7, and 13 for encryption, decryption and reencryption with respect to
Gentry and Halevi’s software implementation. Other recent implemen-
tations on GPUs are [35, 36]. Among the FPGA implementations, one of
the most recent is presented in [1], which compares FPGAs and GPUs,
namely Altera Stratix V and NVIDIA Tesla C2050. Their implementa-
tion efforts are fundamentally focused on the FFT multiplier building
block. The authors conclude that the FPGA version is at least twice as
fast as the GPU one, with lower power consumption. [37] and [38] pro-
poses a full custom ASIC implementation of large-operand multiplica-
tion. The design includes also a 768 Kbit cache to minimize I/O trans-
actions. A single multiplication is performed in 7.7 ms at 666 MHz. The
authors also built the first custom hardware implementation [39] of the
cryptographic primitives of Gentry-Halevi FHE scheme. The design in-

16 FHE Accelerator

cludes optimizations previously introduced in [34] to reduce the number
of FFT computations. Speed-up of 1.24, 99.44, and 10.32 for decryp-
tion, encryption and recryption are achieved compared to the software
implementation of Gentry and Halevi.

As mentioned, most existing implementations focus around optimiz-
ing the most time consuming operations used by the various encryption
schemes: multiplication and modular reduction. Such operations are
performed on very large operands (millions of bits) and can benefit from
better asymptotic algorithms. Most current implementations rely on the
Schonhage-Strassen algorithm (SSA) for the multiplication of large inte-
gers. The SSA algorithm exploits the properties of the Discrete Fourier
Transform over integers, and it pays off for operands of at least 100,000
bits.

Last, [40] proposed an FFT-based large integer multiplier, along with
a Barrett reduction module. Their design was implemented on a Xilinx
Virtex-7 FPGA and included the encryption primitive of Coron et al.
FHE scheme [41, 42]. The results show a remarkable speed-up compared
to existing software implementations.

Our research follows this work line, trying to realize FPGA based
acceleration support for the execution of the most time consuming op-
erations required by FHE schemes. In the following sections we will
present our approach adopted and the results obtained so far.

1.3 Approach followed

Our research work is aimed to support probabilistic, fully homomorphic
algorithms which comprise various approaches, such as the integer-based
approach first introduced by M. van Dijk et al., and schemes based on
Lattice problems and Learning with Errors. We aim to exploit the po-
tential of a highly-customized FPGA design for accelerating the most
time consuming operations used by the encryption primitives: long-
integer multiplication and modular reduction. Since the latter can be
reduced to a combination of one or more multiplications, the priority
is on accelerating multiplication on ultra-large operands (in the order
of millions of bits). The FHE primitives can be implemented on the
top of our accelerator, i.e. in software, this way decoupling the pro-
posed design from the specific FHE scheme. We explored the efficient
implementation of asymptotically faster (but inherently more complex)

1.3. APPROACH FOLLOWED 17

multiplication/reduction algorithms in place of usual schemes used for
moderately large operands (thousands of bits).

The main algorithms available to perform integer multiplication are
the following (in decreasing order of complexity):

• School-book (plain) (O(n2))

• Karatsuba (O(nlog3) ≈ O(n1.585))

• Toom-Cook (O(n
log5
log3) ≈ O(n1.465))

• Schönhage-Strassen (O(n · log n · log log n))

• Fürer (O(n · log(n) · 2O(log⋆n))

Algorithms with lower computational complexity have higher hidden
constants, since they are based on a more complex approach. Karatsuba
and Toom-Cook algorithms are best suited for middle sized operand (in
the order of a thousand bits) such as those required by the RSA scheme.

While Fürer’s algorithm is almost prohibitively complex, Schönhage-
Strassen algorithm (SSA), which exploits the properties of the Number-
Theoretic Discrete Fourier Transform, can offer an asymptotically better
complexity for operands of at least 100,000 bits, where the cost of hidden
constant is better amortized.

Algorithm 1. Schönhage-Strassen multiplication

Input: operands x and y, prime modulus p, unit radix ω, DFT point
number k, word width b.

Output: z = x · y.

• Decompose operand x into a sequance xt of b bit words, with
0 ≤ t < k. The first half of such sequence (x0 to xk/2−1) is made
up with actual bits from operand x, while the second half of the
sequence (xk/2 to xk−1) is filled with zeros. The same oepration is
performed on operand y. Such sequences are considered as poly-
nomial coefficients and the relationship with the original operands
is given by Equation (1.1)

x =

k∑

i=0

(xi mod p) · 2i·b, y =

k∑

i=0

(yi mod p) · 2i·b (1.1)

18 FHE Accelerator

• Compute a k-point integer DFT over the finite field Z/pZ of se-
quences xt and yt, getting the sequences Xt and Yt, with 0 ≤ t < k.
The operations are summarized in Equation (1.2)

Xt =

k−1∑

i=0

xi · ω
i·t (mod p), Yt =

k−1∑

i=0

yi · ω
i·t (mod p) (1.2)

• Compute a point-wise multiplication over the finite field Z/pZ, get-
ting a k-point sequence Zt, with 0 ≤ t < k, as per Equation (1.3)

Zt = Xt × Yt (mod p) (1.3)

• Compute the k-point Inverse DFT of sequence Zt over the finite
field Z/pZ, getting the sequence zt of length k, as per Equa-
tion (1.4)

zt = k−1
k−1∑

i=0

Ziω
−i·t (mod p) (1.4)

• Compute the final result by performing the sum in Equation (1.5),
propagating the long carry chain

z =

k∑

i=0

zi · 2
i·b (1.5)

The computational complexity of SSA is O(n · log n · log log n). The
most time consuming operation in SSA is the computation of the DFT
(and Inverse DFT) over the integer. The DFT is a well known transform,
but it is more commonly found in signal processing, where it is defined
on the complex field C and where the Fourier domain has a cllear and
intuitively interpretation in terms of frequencies which compose a given
signal. Anyway it is possible to define a Generalized DFT, which applies
to a more general algebraic structure and is more abstract in concept
(the Fourier domain has no interpretation in terms of frequencies), but
nonetheless the most relevant DFT properties (especially the theorem
of convolution) still hold. The complex exponentials are replaced by
more general roots of unity, which anyways have to obey some proper-
ties, namely being primitive and principal roots. The Generalized DFT
can then be applied to the modular integer arithmetic, subject to some
constraints. We begin firstly by proving the following theorem.

1.3. APPROACH FOLLOWED 19

Theorem 1.1 Let R be a commutative unitary ring, N a natural num-
ber with N ≥ 2 and N · 1R a unit in the ring and suppose ω is a N th

principal root of unity. Then the homomorphism

ψ : R[x] −→ RN

f(x) 7−→ (f(ω0), . . . , f(ωN−1))

is suriettive with kernel (xN − 1).
The induced isomorphism ϕ : R[X]/(xN−1)→ RN is called the Dis-

crete Fourier Transform with respect to ω. It is represented by the matrix
DFT (N,ω) = (ωpq)1≤p,q≤N ∈ GL(N,R) and the inverse transformation
by IDFT (N,ω) = N−1 · (ω−pq)1≤p,q≤N = N−1DFT (N,ω−1).

1

Proof. kerψ = {f(x) ∈ R[x] : ψ(f(x)) = 0 ⇒
(f(ω0), f(ω1), . . . , f(ωN−1)) = (0, 0, . . . , 0)

Therefore kerψ = ∩N−1
i=0 (x−ωi).We must show that kerψ = (xN−1).

By induction on j we get then that for j = 0, f(ωj) = 0 ⇒ f(1) =
0⇒ f(x) = (x− 1) · g(x).

Now let’s suppose that ∀i : 0 ≤ i ≤ j,N > j > 0 we have that
f(ωi) =

∏j
i=0(x− ω

i) · g(x).

Now let’s consider the next component: f(ωj+1) = 0⇒
∏j

i=0(ω
j+1−

ωi) · g(ωj+1) = 0
We can write also

∏j
i=0 ω

i(ωj+1−i − 1) · g(ωj+1) = 0. By the princi-
pality of ω, the factors (ωj+1−i − 1) are not zero divisors ⇒ g(ωj+1) =
0⇒ g(x) = (x− ωj+1) · u(x) 2

Then kerψ = (xN−1). The induced homomorphism ϕ : R[X]/(xN−
1) → im(ψ) is indeed an isomorphism with associated matrix
DFT (N,ω).

We still need to show that ϕ is surjective, which can be done showing
that DFT (N,ω) is invertible, that is DFT (N,ω) ·IDFT (N,ω) = I(N).

ap,r =
N−1∑

q=0

ωpq ·N−1ω−qr = N−1 ·
N−1∑

q=0

ωpq · ω−qr =

1Unit means an invertible element. Not to be confused with unity. If N is invertible
then it cannot be divisible by the characteristic. So we are implicitly impling that ω
is also primitive.

2
∩

N−1
i=0 (x− ωi) Intersection of the ideals generated by (x− ωi),, i.e. the set of the

polynomials (x− ωi) · g(x)

20 FHE Accelerator

N−1 ·
N−1∑

q=0

ωq(p−r) =

{

N−1
∑N−1

q=0 1 = 1 for p = r

0 for p 6= r

The last descends from the principality of ω.

In order to apply the DFT to a modular integer ring ZM , some
properties must be satisfied: firstly, the number of points N must be an
invertible element in ZM , which is satisfied if gcd(N,M) = 1. Then we
must find a primitive root of unity, that is, a root of unity with order N .
The multiplicative group generated by such root is cyclic and, according
to Lagrange’s theorem, its order must be a divisor of the order of any
of its super-groups. The maximal multiplicative group in ZM is given
by all its invertible elements. It is denoted Z

⋆
M and its order if ϕ(M),

where ϕ is the totient function. Therefore we must have that N divides
ϕ(M).

Computing directly the DFT would give a time complexity of O(N2);
a more efficient method if using the Fast Fourier Transform algorithm
of Cooley-Tukey [43] with a complexity of O(N ·logN). It can be showed
that their divide-et-impera method (which was actually invented by C.F.
Gauss) can be applied also in the case of the DFT over the integer.
Instead of using the classic Radix-2 based implementation, we choose to
apply the generalized FFT approach in order to decompose the overall
FFT into higher order sub-FFTs.

Starting from the basic DFT formula F [k] =
∑N−1

n=0 f [n]ω
kn
N , we

decomposeN asN = N1·N2, so the input and output vectors can be split
intoN1 sub-sequences of lengthN2. Let n = N2n1+n2 and k = N1k2+k1
with n1, k1 ∈ {0, 1, . . . , N1 − 1} and n2, k2 ∈ {0, 1, . . . , N2 − 1}. Then
the DFT can be written as:

F [N1k2 + k1] =

N−1∑

n=0

f [n]ωkn
N =

=

N2−1∑

n2=0

[(

N1−1∑

n1=0

f [N2n1 + n2] · ω
n1k1
N1

) · ωn2k1
N] · ωn2k2

N2
(1.6)

Despite the better time complexity, one of the main problem of the
FFT (regardless of the chosen radix) is that its memory access pattern is

1.3. APPROACH FOLLOWED 21

Figure 1.2: Butterfly scheme of the Radix-2 FFT.

highly non sequential, therefore badly affecting access time for cache and
DDR memory. As can be seen from Figure 1.2 for the case of Radix-2
FFT, memory accesses are more spread out as we proceed from onr stage
to the next one. This is the so called butterly access pattern. In custom
hardware implementation, it is usual to use a scratchpad memory, with
a dedicated address space and outside of any cache hierarchy. We’ll
follow a similar approach and we’ll add a dedicated logic to manage the
particular FFT access pattern.

We choose to perform the computation in the finite field Z/pZ ,
with prime p. By selecting a proper prime p, the modular multiplication
in the finite field can be computed rapidly as simple shifts. In our
implementation, we choose the Solinas prime number p = 264 − 232 +1,
since its particular properties greatly simplify arithmetic computing,
especially multiplication. Table 1.3 shows some possible choices for the
FFT modulus from the scientific literature, along with the corresponding
bit width requirement, a feasible choice for the FFT number of points k
and the relative root of unity ω.

In the following, we suppose to deal with operands of 786432 bits,
which corresponds to the small security parameter setting for DGHV

22 FHE Accelerator

Modulus Bit width k ω

Special form [44]
232 + 1 33 64 2
264 + 1 65 128 2

Solinas form [45] 264 − 232 + 1 64 128 7
General form [46] 232 − 220 + 1 32 64 17

Table 1.3: Possible choices of modulus and corresponding parameters

and is used in many research papers. Operands are decomposed into
32K coefficients of 24 bits.

We need to apply FFT on 64K points, in order to accommodate the
multiplication result. By applying Equation 1.6 recursively on the 64K-
point DFT, it can be computed with three stages using radix-64 and
radix-16 sub-transforms:

N1−1∑

n1=0

N2−1∑

n2=0

[
N3−1∑

n3=0

(

a[n]ωn3k3

N3

)

ωn2k3

N2N3
ωn2k2

N2

]

ω
n1k

′

2

N
ωn1k1

N1
=

=

15∑

n1=0

63∑

n2=0

[
63∑

n3=0

(

a[n]ωn3k3

N3

)

ωn2k3

N2N3
ωn2k2

N2

]

ω
n1k

′

2

N
ωn1k1

N1
(1.7)

where
n = N1N2n3 +N1n2 + n1,

k′2 = k3 +N3k2

Each stage can be efficiently parallelized, according to the available
computing resources.

1.4 Architecture of the FPGA-based accelera-

tor

The essential challenge addressed by this work is the support for
ultralarge-operand FFT computation. One design objective we set for
the proposed accelerator was the inherent support for scalability to ultra-
large operands which, unlike many cryptographic primitives in different
contests, may require a flexible and composable design solution applica-
ble either to on- or off-chip scenarios, possibly in multi-FPGA settings
available on the server side. Consequently, for the implementation of

1.4. ARCHITECTUREOF THE FPGA-BASED ACCELERATOR23

the 64K-point FFT building block, we devised a flexible distributed ap-
proach, relying on several nodes connected in a hypercube topology,
which matches exactly the logical topology of the distributed FFT algo-
rithm. The solution was initially prototyped on a multi-board platform
based on low-end devices (Altera Cyclone V) then extended to a hybrid
on-/off-chip solution relying on a larger device, i.e. an Altera Stratix
V FPGA. The distributed approach, distinguishing our proposal from
previous related works like [1], matches very well the FFT computation
and ensures several advantages compared to shared memory approaches,
such as better scalability and reduced use of global routing resources,
which may be a major performance bottleneck especially on FPGAs.
Using a hypercube topology, the number of communication stages for
FFT computation is the hypercube dimension d. Figure 1.5 shows the
hypercube network in the case of four computing nodes; Figure 1.6 shows
instead the case for eight computing nodes.

In each stage, a node communicates only with one of its d neighbors,
one for each stage.

The number of computation stages l instead depends on the FFT
decomposition, as previously shown. We must have l > d in order to

Banked

SRAM

Banked

SRAM

Radix-64

FFT Unit

Data

Route

Figure 1.3: Architecture of a 64K FFT processing element.

24 FHE Accelerator

n1 n2 n3

0 0 0

7 31 63

n1 n2 n3

0 32 0

7 63 63

n1 n2 n3

8 0 0

15 31 64

n1 n2 n3

8 32 0

15 63 64

64

points

FFT

64

points

FFT

64

points

FFT

64

points

FFT

n1 n3 n2

0 0 0

7 31 63

n1 n3 n2

0 32 0

7 63 63

n1 n3 n2

8 0 0

15 31 64

n1 n3 n2

8 32 0

15 63 64

64

points

FFT

64

points

FFT

64

points

FFT

64

points

FFT

n2 n3 n1

0 0 0

31 31 15

n2 n3 n1

32 32 0

63 63 15

n2 n3 n1

32 0 0

63 31 15

n2 n3 n1

0 32 0

31 63 15

16

points

FFT

16

points

FFT

16

points

FFT

16

points

FFT

Processing

Element

00

Processing

Element

01

Processing

Element

10

Processing

Element

11

Stage 0 Stage 1 Stage 2

Exchange of

n3*n2*n1/8

values

Figure 1.4: Data distribution.

correctly interleave computation and communication. If l > d+1, com-
munication takes places only after the first d computation stages while
the subsequent stages are computation only. The overall architecture
of a single node, which we will call Processing Element, is shown in
Figure 1.3.

00

01

11

10

Figure 1.5: Hypercube topology for a system comprising four Processing
Elements.

1.4. ARCHITECTUREOF THE FPGA-BASED ACCELERATOR25

000

001

010

100 110

011

111101

Figure 1.6: Hypercube topology for a system comprising eight Process-
ing Elements.

The core computing element is the Radix-64/16 FFT unit, which
computes the basic sub-transforms. Since in our distributed scheme
communication will indeed overlap with computing, double buffering is
used: while a buffer is feeding current input values, the other one is
filled with new values coming partly by the same node and partly from
one of its neighbors. At the end of a computation stage, the roles of the
buffers are swapped. Buffers are based on a banked architecture which
uses the SRAM primitive blocks of the underlying FPGA architecture.
Additionally, we also need a group of modular multipliers for twiddle
factor multiplications, required between two consecutive FFT compu-
tation stages. The data route component is responsible for the proper
ordering of FFT output points before writing in the memory buffers.

1.4.1 Data distribution and exchange pattern

Below we consider the computing of a 64K-point FFT with four process-
ing elements. In the initial data distribution phase, the 64K elements
vector is partitioned among the four processing elements, considering
also the proper decomposition reordering. Then, computing and data
exchange stages take place, in a interleaved (but actually overlapped)
way. During a computing stage each node can execute in a completely
independent way.

We recall also that, according to the previous formula, we can de-

26 FHE Accelerator

compose the 64K FFT as per Equation 1.7. Figure 1.4 summarizes the
sequence of computing and communication stages: bold style is used
to highlight the index (among n1, n2, and n3) involved in the current
sub-FFT computing and subsequent data exchange.

Shifter Adder tree Accumulator Normalize AddMod
ps

sc

ps

sc

ps

sc

Shifter Adder tree Accumulator Normalize AddMod
ps

sc

ps

sc

ps

sc

Shifter Adder tree Accumulator Normalize AddMod
ps

sc

ps

sc

ps

sc

8 samplesa[i]

A[0]

A[1]

A[63]

Figure 1.7: Architecture of the baseline Radix-64 unit [1].

1.4.2 FFT-64 unit

The Radix-64 unit (or FFT-64) is the basic building block which is
capable of computing the sub-transforms that make up the overall FFT.
It can be easily extended for computing also Radix-16 FFT, though this
will not be shown here. In the chosen finite field, the 64th root of unity is
8, so multiplications in the FFT formula become just shifts, as follows:

A[k] =

63∑

i=0

a[i]ωi·k
64 =

63∑

i=0

a[i]8i·k (mod p) (1.8)

Since 864 (mod p) = 2192 (mod p) = 1, no intermediate value can ex-
ceed 192 bits.

The unit proposed here builds on a baseline scheme [1] shown in
Figure 1.7. Input samples are read 8-by-8 and are fed to 64 separated
computing chains, one for each frequency component. Each chain com-
prises a shifter bank, where the eight samples are multiplied by their
respective twiddle factor. Shifted values are summed by an adder tree
to produce a partial sum. To avoid the latency of long carry chains,
a carry save solution is adopted. The output is then made up of two
vectors, which are not merged until the very last block (AddMod). The

1.4. ARCHITECTUREOF THE FPGA-BASED ACCELERATOR27

accumulator will sum up the partial sums in eight consecutive clock
cycles. After the eight clock cycles, the transform is complete and the
value in the accumulator is modular reduced. The Normalize block com-
putes a first coarse reduction by applying Equation 1.9, which applies
to 128-bit numbers and exploits the properties of the chosen modulus:

a · 296 + b · 264 + c · 232 + d = 232(b+ c)− a− b+ d (1.9)

The result will require at most one extra addition or subtraction with the
module p. This last operation is performed in the AddMod component.

The baseline scheme is highly redundant since much work can be
shared among the components. Our architecture exploits such redun-
dancy through several structural solutions, which, as will be shown in
the implementation details, result in a significant reduction of area usage
and higher parallelism.

In order to exploit common work between the FFT components, we
apply Equation 1.6 to the 64-point FFT:

63∑

i=0

aiω
i·k =

7∑

j=0

[(
7∑

i=0

ai·8+jω
i·k1
8

)

· ωj·k1
64

]

· ωj·k2
8 =

=

7∑

j=0

(
7∑

i=0

ai·8+jω
i·k1
8 · ωj·k1

64

)

· ωj·k2
8 (1.10)

The expression between parenthesis is computed by the first stage
in Figure 1.8, where eight samples from the memory are shifted and
summed; This is done only for eight frequency components (denoted
by k1). Then, such partial sums are multiplied by the twiddle factor

ωj·k2
8 while the external sum is performed by each accumulator. The

multiplication by ωj·k2
8 leads to eight possible shifts, but they can be

reduced to four if we consider that one half of the twiddle factors are
the opposite of the other half (the partial sum will be subtracted in the
accumulator instead of being summed). The four factors needed are then
20, 224, 248, and 272 (respectively, no shift, shift by 24, 48, and 72 bits).
Accumulators can be thought of as being partitioned into eight blocks of
eight accumulators (block number corresponds to k2 in Equation 1.10).
Each block contains a multiplexer selecting which of the four shifts is
needed, according to the block number and the current computing step

28 FHE Accelerator

Shifters

Shifters

Shifters

Shifters

A���� ����

A���� ����

A���� ����

A���� ����

Shifter

Shifter

Shifter

Shifter

Shift�� e�

Shifter 48

Shifter 72

From coefficient ROM

Acc 0

Acc 7

Acc 0

Acc 7

Acc 0

Acc 7

Step Count Modular

Reduction

Modular

Reduction

Modular

Reduction

Accumulator

Bank 0

Accumulator

Bank 1

Accumulator

Bank 7

Stage 0 Stage 1 Stage 2

8

8

8

8

8

8

+

-

+

-

+

-

+

-

Figure 1.8: Architecture of FFT64 unit.

(respectively, index k2 and j). Each block receives also a subtract signal
(not shown in figure).

The first stage is itself optimized by computing only four of the eight
components using the relation:

7∑

i=0

ai·8+jω
i·k1
8 · ωj·k1

64 =

7∑

i=0

ai·8+jω
i·(k′1+4)
8 · ω

j·(k′1+4)
64 =

=
7∑

i=0

ai·8+jω
i·k′1
8 · ωi

2 · ω
j·k′1
64 · ω

j
16 for k = 4, 5, 6, 7

We can see that components 4 to 7 can be computed similarly to the
first four, except for the multiplication by a factor ωj

16 and the fact
the in the summation odd terms are taken with negative sign. This is
done by modifying the adder tree so that it outputs also the difference
between the sums of even and odd terms (such modification adds very
little complexity to the adder tree).

After eight computing steps, the accumulators contain the FFT out-
put which needs to be modular reduced. While the baseline scheme
uses 64 modular reduction components, one for each accumulator, we
observe that the maximum average throughput, even in a fully pipelined
solution, is eight components per clock cycle. Consequently, we use only

1.4. ARCHITECTUREOF THE FPGA-BASED ACCELERATOR29

eight modular reductors, one for each accumulator block, preceded by a
multiplexer which switches to a different component at each clock cycle.
So we yield exactly eight frequency components for each clock cycle.
Our solution has a twofold advantage: First, it reduces the area occu-
pancy of the FFT64 unit and the memory parallelism required (eight
words vs. 64). Second, it realizes part of the work of the Data Route
component, since at every clock cycle we produce eight values which are
appropriately spaced out for memory writing.

We also identified a couple of minor optimizations. We merged carry-
save vectors immediately after the adder tree, reducing area usage. The
carry propagation latency penalty can be mitigated by adding a pipeline
stage. Furthermore, before Stage 1, we reduce the bit-width of each value
by applying Equation 1.9. This further reduces the area, particularly
routing resource usage.

Last, we recall that the FFT-64 unit can be adapted, with minor
modifications, to compute also Radix-8, Radix-16, and Radix-32 FFTs.
This gives us greater flexibility in choosing an FFT order other than
64K.

1.4.3 Internal Bank Memory

Our internal memory needs to support the specific FFT memory access
pattern yet guarantee an appropriate degree of parallelism. A simple
linear bank memory ensures parallel read accesses (with consecutive
words in a row mapped to different banks) but it would cause write
accesses to collide on the same bank. These considerations led us to
adopt a two-dimensional bank scheme as in Figure 1.9. Each square is
a basic memory block, which is dual port SRAM, with a depth of 256
words and word-width of 64 bits implemented as native FPGA memory
blocks (namely, two Altera M20K hard core blocks).

A 4x4 array of basic memory blocks gives a size of 256Kb which can
hold a vector of 4096 points. The scheme in the figure considers only
one of the dual port of a basic block, for visual clarity. Read access is
column-wise, write access row-wise. Access parallelism is eight words
per clock cycle, either during reading or writing.

30 FHE Accelerator

W�

Lower Bits
Address bus Upper Bits

Middle bits (to every block) {
Read ports

{
Write ports

Figure 1.9: Architecture of banked memory buffer.

1.4.4 Modular multiplier

The output points of inner FFTs have to be multiplied by appropriate
twiddle factors before they can be used by the external FFT. We chose
to use DSP blocks for greater efficiency in terms of area and speed. To
realize 64x64 multiplication we can split our operands in 32-bit compo-
nents and use a basic 32x32-bit DSP multiplier, which requires only two
DSP blocks. Using school-book multiplication, four 32x32-bit multipli-
ers are needed; partial products are then summed and modular reduced
using Equation 1.9.

1.4.5 Data route

The job of this component is to properly order the output points coming
from the modular multipliers, ensuring their correct writing in memory
as well as computing the correct addresses according to the current com-
putation step. As mentioned earlier, the complexity of this component
is greatly reduced since part of its job is performed by the FFT-64 unit.
In fact, it is just a memory address generator.

1.5. IMPLEMENTATION AND PERFORMANCE 31

1.5 Implementation and performance

To implement the proposed accelerator, we targeted a Stratix V
5SGSMD8N3F45I4 FPGA, as in [1], using VHDL as the design entry
language. Most of the implementation effort was put on the Radix-64
unit, the banked memory, and modular multipliers. All of them have
been adeguately tested and work as expected. By careful pipelining
some subsystems, the components could be synthesized with an operat-
ing frequency of 200 MHz.

Below we present a performance estimate, first addressing the FFT
and then the SSA multiplication. The FFT-64 unit is able to output an
FFT every eight clock cycles, while a FFT-16 will take two clock cycles.
A single 64K points FFT will take:

TFFT = 2 · (TC · 8 · 1024)/P + (TC · 2) · 4096/P

where TC is the clock period, i.e. 5 ns, while P is the number of
Processing Elements (here, four). The first term refers to the first two
stages, with 1024 FFTs on 64 points. The second term refers to the last
stage where 4096 FFTs on 16 points are computed.

By replacing the clock period and using four Processing Elements,
we get

TFFT = 20480ns + 10240ns ≈ 30.7µs

A full SSA multiplication requires three FFTs (two direct FFTs for
the inputs and one inverse FFT for the output). Besides we must per-
form a component-wise multiplication on two vector of 64K components
and the final carry recovery addition on the inverse FFT components.
The remaining resources can accommodate at least 32 additional mod-
ular multipliers for component-wise multiplication, yielding:

TDOTPROD = TC · 65536/32 ≈ 10.2µs

The final carry recovery can be efficiently computed with an ad hoc
adder structure, which is th object of another research work. Its max-
imum delay is approximately 20µs. So the overall time for a complete
SSA multiplication is ≈ 122µs.

Table 1.4 summarizes the resource usage and performance compari-
son between the proposed solution and [1]. Notice that [1] only presents
quantitative results for the FFT operation. For our comparison, we con-
servatively assumed a zero difference for the remaining dot-product and

32 FHE Accelerator

carry recovery operations. Overall, the combination of the optimiza-
tions presented above resulted in a 34.4% saving in terms of hardware
resources as well as a 332% gain in terms of execution speed. Fur-
ther performance gain could be achieved by allocating more computing
nodes, by using the saved area, but we aim to exploit such resources
for implementing the above mentioned carry recovery block. Finally,
table 1.5 reports a performance comparison between our solution, [1],
[asic] (which is a 90nm ASIC solution), [gpu12] and [gpu13] which are
based on NVIDIA C2050 GPU.

Proposed here [1]

ALMs 104000 (40%) 231000 (88%)
Registers 116000 (11%) 336377 (31%)

DSP blocks 256 (13%) 720 (37%)
M20K SRAM 8 Mbit (20%) −

Table 1.4: Comparison of resource usage.

Proposed here [1] [asic] [gpu12] [gpu13]

FFT(µs) 30.7 125 − 250 −
Multiplication(µs) 122 405 206 765 583

Table 1.5: Comparison of excution time.

Chapter 2

GPU extension for

Montgomery Multiplication

M
odular multiplication is the fundamental operation of most
public-key cryptosystems, both those based on exponentiation

(RSA, Diffie-Hellman, El Gamal) as well as Elliptic Curve schemes based
on prime Finite Fields Fp. Modular reduction, part of modular multi-
plication, is the most demanding in term of execution time and, if per-
formed in software using classical integer division, would make public-
key cryptography impractical, given the large operands involved (e.g.,
224 bits for ECC schemes, 2048 bits for RSA).

2.1 Modular Multiplication

2.1.1 Montgomery modular reduction and multiplication

In his breakthrough paper [47], Peter Montgomery introduced a novel
and efficient approach to perform modular reduction without any trial
division. It consists in computing P · R−1 mod M which can be much
faster than computing P mod M . Factor R is called Montgomery
radix and must satisfy R > M and gcd(R,M) = 1. The Mont-
gomery reduction algorithm is reported in Algorithm 1. Montgomery
reduction can be extended to include a multiplication by computing
A · B · R−1 mod M , where A and B are the multiplicands. Given the
condition P ≤ (RM −1), Montgomery reduction ensures that the result
is less than 2M , therefore an additional subtraction may be needed to

33

34 Modular Multiplication on GPU

obtain the reduced result. R is commonly chosen to be a power of two
to speedup computation, since reduction modulo M is replaced by re-
duction and division by R. Since Montgomery reduction/multiplication

Algorithm 1 Montgomery reduction.

Require:

modulus M
auxiliary modulus R, such that gcd(M,R) = 1 and M < R
positive integer P such that P < M2

pre-computed constant M ′ ≡ −M−1 mod R such that M ′ ∈ [0, R)
Ensure: Z = P ·R−1 mod M , such that Z ∈ [0,M).
1: Q← (P mod R) ·M ′ mod R
2: T ← (M ·Q+ P)/R
3: if T ≥M then

4: Z ← T −M
5: else

6: Z ← T
7: end if

doesn’t compute directly a modular reduction/multiplication, in order
to obtain the latter the input operands to be in a proper representa-
tion, the so called Montgomery representation. Given operands A and
B, their Montgomery representation is computed as A′ ≡ A ·R mod M
and B′ ≡ B ·R mod M . By taking the canonical representatives of such
residue classes (that is, the remainders modulo M) we also obtain that
A′, B′ ∈ [0,M). The sum of two numbers in Montgomery representation
is still in Montgomery representation, since

A · R mod M +B · R mod M ≡ (A+B) · R mod M (2.1)

This is not true for multiplication since

(A · R mod M) · (B · R mod M) ≡ A · B ·R2 mod M (2.2)

Anyway, if use Montgomery multiplication, we get

A′ ·B′ · R−1 mod M = (A·R mod M) · (B·R mod M) ·R−1 mod M =

= A·B·R2·R−1 mod M = A·B·R mod M
(2.3)

2.1. MODULAR MULTIPLICATION 35

which is now in the correct representation.
Given a function MONTMUL to compute the Montgomery multipli-

cation, it can be used also to compute the Montgomery representation
of an operand the following way

MONTMUL(A,R2) = A·R2·R−1 mod M = A·R mod M (2.4)

Likewise, it can be used to convert back from Montgomery to ordinary
representation

MONTMUL(A′, 1) = A·R·R−1 mod M = A mod M (2.5)

In software implementations, large operands are usually decomposed
into a sequence of w-bit words. The above bulk version of Montgomery
reduction/multiplication can be adapted to work word-wise, as shown in
Algorithm 2. In this case, the radix R is chosen to be 2w and reduction
is applied progressively starting from the least significant word of P .

2.1.2 Barrett modular multiplication

For completeness sake, we preset another important algorithm for mod-
ular reduction. Paul D. Barrett introduced in 1986 a novel technique in
order to speed-up the implementation of the RSA encryption algorithm
on an off-the-shelf digital signal processor (in the original article, results
for Texas Instrument’s TMS 32010 were reported). Algorithm 3 reports
the algorithm scheme. The general idea is that in order to obtain the
remainder modulo p, we must subtract from input x a proper multiple
of the modulo itself, namely σ · p. Barrett’s algorithm gives a way to
compute the approximate quotient σ.

2.1.3 Camparison with Montgomery reduction

The Barrett and Montgomery reduction algorithms are both useful to
implement a faster modular reductions. They share some similarities

• thier input operand range is [0,M2)

• they are based on the use of precomputed constants (M ′ ≡

−M−1 mod R for Montgomery and ⌊2
2k

M ⌋ for Barrett)

• they can be combined with multiplication, since both require 0 ≤
a, b < n, so we have 0 ≤ ab < n2

36 Modular Multiplication on GPU

Algorithm 2 Montgomery reduction (word-wise version).

Require:

odd modulus M = (ms−1, . . . ,m1,m0)
auxiliary modulus R, power of 2 such that R > M
operands P = (p2s−1, . . . , p1, p0) such that P < M2

pre-computed constant m′ ≡ −m−1
0 mod 2w, such that m′ ∈ [0, 2w)

where s = ⌈n/w⌉, n is the bit length of M , w is the word length.
Ensure: Z = P ·R−1 mod M .
1: t← 0
2: for i← 0 .. s− 1 do

3: q ← pi ·m
′ mod 2w

4: h← 0
5: for j ← 0 .. s− 1 do

6: (h, l)← mj · q + pi+j + h
7: pi+j ← l
8: end for

9: (h, l)← pi+s + h+ t
10: pi+s ← l
11: t← h
12: end for

13: for i← 0 .. s− 1 do

14: zi ← pi+s

15: end for

16: zs ← t
17: if Z ≥M then

18: Z ← Z −M
19: end if

2.2. PREVIOUS WORKS 37

Algorithm 3 Barrett modular reduction [48]

Require: x (2m bits), modulus p (m bits), with x < p2, precomputed

constant p′ = ⌊2
2k

p ⌋, with k ∈ N : p < 2k (e.g., k = ⌈log2p⌉).
Ensure: y ≡ x mod p, 0 ≤ y < p.
1: σ ← ⌊x·p

′

22k
⌋

2: t← x− σ · p
3: if t ≥ p then

4: y ← t− p
5: else

6: y ← t
7: end if

• both require an optional final subtraction in order to get the cor-
rect result

• they perform 2 internal multiplications per reduction.

Among the differences there is the fact that Montgomery reduction
requires numbers to be converted into and out of Montgomery repre-
sentation (which, as we have seen, can be done using the very same
Montgomery multiplication); Barrett reduction, instead, operates on
regular numbers directly. On the other side, for a modulus of k bits,
Montgomery internally performs two k-by-k bit multiplications yielding
a 2k bit result, while Barrett internally performs a 2k-by-k bit multi-
plication yielding 3k bits, plus a k-by-k bit multiplication yielding 2k
bits. Therefore, Barrett algorithm is computationally a bit more ex-
pensive. For these reasons, Montgomery multiplication is more suitable
for modular exponentiation, with several multiplication using the same
modulus.

Finally, Montgomery is based on modular arithmetic and exact di-
vision, whereas Barrett is based on approximating the real reciprocal of
the modulus with bounded precision.

2.2 Previous works

In the years, several efforts have been made in order to efficiently imple-
ment Montgomery multiplication on different platforms. The authors in
[49] analyze the problems posed by resource constrained environments

38 Modular Multiplication on GPU

and propose an implementation for an 8-bit AVR microcontroller. Other
researchers proposed solutions based on completely custom multipliers
implemented on FPGA technology, such as the work by Yang et al. [50]
for Xilinx Virtex-6 FPGAs. Massolino et al. [51] target instead low-
power FPGA devices, specifically Microsemi IGLOO-2. In the recent
years, efforts have been focused on exploiting data level parallelism avail-
able with modern CPU SIMD extensions or in general-purpose GPUs.
Seo et al. [52] propose a highly optmized algorithm targeted at the ARM
NEON pipeline. Zheng et al. [53] instead exploit the high performance
floating-point capabilities of NVIDIA GeForce GTX TITAN GPUs.

2.3 From the algorithm to the GPU-like data-

path

This section gives a thorough description of the approach taken to cus-
tomize the GPU datapath. Figure 2.6 shows the baseline core architec-
ture of the GPU-like processor provided by the MANGO H2020 project.
Only the functional units of interest for the algorithm implementation
are shown. In order to extend the core to support Montgomery multi-
plication, we mostly focused on the existing integer MAC pipeline and
the surrounding hardware used to store and transfer data. The first key
choice to make, of course, concerns the specific algorithm used to im-
plement Montgomery multiplication, so as to maximize the match with
the hardware mechanisms exposed in the GPU-like datapath.

2.3.1 The Nu+ GP-GPU datapath

Before proceeding to describe the cryptographic extension for our GPU-
like, we’ll first outline the main characteristics of the Nu+ core. The
overall architecture is shown in Figure 2.1. The core is based on a
RISC architecture with in-order instruction execution. Control logic
is kept as much simple as possible. The architecture masks memory
and operation latencies by heavily relying on hardware multithreading.
These two points represent the essence of the GP-GPU approach, where
it is desirable to dedicate most of the hardware resource to funtional
units rather than control logic. This way, a higher degree of parallelism,
in terms of lanes and threads, is available for accelerating highly data-
parallel kernels. We precise here that by thread we mean actually a

2.3. FROM THE ALGORITHMTO THEGPU-LIKE DATAPATH39

Figure 2.1: Overall view of Nu+ datapath

vector or SIMD thread, which would corresponds to a thread warp in
the NVIDIA CUDA technology. In Nu+, each hardware thread has its
own PC, register file, and control registers. The number of threads is
user configurable.

All threads share the same functional units; each execution pipeline
comprise several hardware lanes, with each scalar unit (e.g. and adder
or multiplier) replicated per each lane. Each thread can then execute
SIMD instructions, computing, for exemple, N additions in parallel and
simultaneously, subject to data independence in the operands. Beside a
memory hierarchy, comprising multi-level caching and coherence proto-
cols, the core supports also a high-throughput non-coherent Scratchpad
memory (SPM), corresponding to the shared memory in the NVIDIA

40 Modular Multiplication on GPU

terminology. Nu+ is intended to be an highly customizable core, to be
adapted to different class of applications. The following are some of the
configurable parameters

• Number of cores

• Number of threads

• Number of lanes

• Number of registers per thread

• Cache set-size

• Cache associativity degree

• Cache line size

• SPM bank count

The core supports predicated execution, that is, each SIMD instruc-
tion can have an execution mask which indicate for each lane if the cor-
responding result must be stored in the VRF. Such mask is contained in
a scalar register of the SRF; it is usually set by using comparison instruc-
tions, but manually writing is howerver possible. Execution mask allows
to simulate the execution of multiple scalar threads in parallel mapping
each of them to a lane (in this case, a scalar thread corresponds to a
CUDA thread using NVIDIA terminology. Divergence points, such as
if-then-else statements, may make lockstep execution impossible, since
some threads could follow the then brach, while others the else. By us-
ing predicated execution, the instructions of both branches are always
executed, but their execution is conditioned by to complimentary masks,
which correspond to the sets of threads for which the if condition holds
respectively true and false. Such behaviour is exemplified in Figure 2.2.
Masks can obviously used for other purposes, but the example above is
the typical of a high level language compiler (such as C) when used to
parallelize scalar threads.

The Nu+ core and corresponding many-core architecture is currently
emulated using an FPGA-based platform. Reconfigurable hardware can
be considered both as a possible platform for actual deployment, which
useful whenever reconfigurability for different applications is desirable,
but, more generally, as a prototyping tool to support design and test of

2.3. FROM THE ALGORITHMTO THEGPU-LIKE DATAPATH41

if(cond>0) {

 a=5;

 b=2;

} else {

 a=1;

 b=3;

}

T T T T T TF F

Lane1 Lane8

Figure 2.2: Predicated execution using masks.

extensions and optimizations for various classes of applications. In the
latter case, the architecture could also be implemented as ASIC, if the
trade-off cost-performance is acceptable.

In the following, we briefly sketch out the most significant Nu+ core
pipeline units.

Instruction Fetch stage Instruction Fetch stage schedules the next
thread PC and load the corresponding instruction. The current thread
is selected from a pool of eligible threads by the Thread Controller.
Available threads are scheduled in a Round Robin fashion. At boot
time, the Thread Controller can initialize each thread PC through a
dedicated interface.

This stage contains an instruction cache, which is set associative and
has two stages. Once an eligible thread is selected, the unit computes its
next PC, and determines if the next instruction cache line is already in
the instruction cache memory. If not, an instruction memory transaction
is issued to the Network Interface and the thread is blocked until the
instruction line is not retrieved from main memory. Finally, this module
handles the PC restoring in case of rollback. When a rollback occurs and
the rollback signals are set by Rollback Handler stage, the Instruction

42 Modular Multiplication on GPU

Fetch module restore the PC of the thread that issued the rollback with
a previous value.

Instruction Scheduler stage After decoding, instructions are stored
in FIFOs, one for each thread. The Dynamic Scheduler checks data
hazard and decides which thread can be scheduled and issued to the
Operand Fetch. At this stage only data hazards and some structural haz-
ards (such as those for the FPU) are checked, other structural hazards
are checked on-the-fly in the Writeback stage. The Dynamic Scheduler
relies on a light scoreboarding system; based on the scoreboard status
and on the instructions which are currently at the top of the non empty
FIFOs, the Dynamic Scheduler decides which threads are able to be
scheduled, and, among them, a thread is selected using a round-robin ar-
biter. Then, the the chosen decoded instruction is issued to the Operand
Fetch and the related thread scoreboard is updated accordingly. Each
scoreboard keeps track of the destination registers with currently pend-
ing (not completed) instructions. When an instruction completes, the
corresponding destination register is released by the Writeback stage by
clearing the corresponding bit in the scoreboard. If a rollback occurs,
the Dynamic Scheduler flushes the FIFO of the thread which issued the
rollback, and restores its scoreboard to the previous state.

Operand Fetch stage Operand Fetch prepares operands for the Ex-
ecution pipelines (FPU, ALU, etc.). This stage contains two register
files: a scalar register file (SRF) and a vector register file (VRF). A SRF
register size is word size (typically, 32 bits), a VRF register size is equal
to the scalar size multiplied by the number of lanes. Each thread has its
own pair of SRF and VRF. There are two substages of which the first is
the actual register file read access for the two input operands, while the
latter computes the actual values for operands, for example, for a mem-
ory access instruction it computes the effective memory address adding
the base address from a register with an immediate offset.

Some registers of the SRF are reserved for special register which
contain thread-level status, such as the Program Counter, the Stack
Pointer and the Mask register. Actually the PC is not stored in a real
register, but contained in the interface registers between Nu+ pipeline
stage. The Operand Fetch possesses also a write interface receiving
signals from the Writeback stage. In case of vectorial operation, a signal

2.3. FROM THE ALGORITHMTO THEGPU-LIKE DATAPATH43

vector containing the lane mask indicates which lane is affected by the
current operation.

When a masked instruction is issued, the mask register itself is read
during Operand Fetch stage. When one of the operand is immediate and
the instruction is vectorial, its value is replied on each vector element.

Writeback stage The Writeback stage manage the writing of out-
coming results from the execution pipelines into the register files. The
execution pipelines have different lengths and latencies (memory laten-
cies are even not known at compile time), so instructions issued in dif-
ferent cycles could arrive at the Writeback in the same clock cycle. The
Writeback module avoids structural hazards on-the-fly, using a set of
queues, one for each execution pipeline: in each queue, the correspond-
ing result is stored, an arbiter selects one result in a round-robin fashion
and issue the destination register writing to the Operand Fetch stage.
Each queue stores all the information needed for a writeback operation,
such as destination register and write mask.

Rollback handler Rollback Handler restores PCs and scoreboards of
the thread that issued a rollback. A typical case of rollback is a taken
jump or a trap; in this case, the Brach module in the Execution pipeline
issues a rollback request to this stage, and passes to the Rollback Handler
the thread ID that issued the rollback, the old scoreboard and the PC
to restore. Furthermore, the Rollback Handler flushes all issued and the
queued requests of this thread still in the pipeline.

Thread controller Thread Controller handles the pool of executable
thread. This module blocks threads that cannot proceed due cache
misses or hazards. Also, Thread Controller handles threads wake-up
when the blocking conditions are removed.

Furthermore, the Thread Controller interfaces the Instruction Cache
with the main memory, since the architecture supports only one level of
caching for instructions. In other words, when an instruction cache miss
occurs, the data is retrieved directly from the main memory.

2.3.2 Algorithm GPU-ization

Different choices are available to implement Montgomery multiplication.
Firstly, one can perform multiplication and Montgomery reduction sep-

44 Modular Multiplication on GPU

arately or in an interleaved fashion. The former allows the adoption
of more advanced multiplication algorithms, such as the Karatsuba de-
composition, while the latter allows an optimized overlapping of the two
operations, yielding a computation time lower than the sum of the two
separate computations. When performing a school-book multiplication,
based on two nested loops, one can essentially take two main approaches:

• Operand Scanning : operand words are read sequentially, in in-
creasing order of weight, from the least to the most significant
one. The operand scanned by the inner loop is obviously scanned
multiple times.

• Product Scanning : one word of the final result is considered at a
time and is stored only once. The approach requires less temporary
memory and fits well in resource constrained embedded systems.
On the other hand, because of the algorithm asymmetry, it is less
susceptible to optimizations and parallelization.

The Operand Scanning approach can be easily integrated with Mont-
gomery reduction, allowing two main options [49]:

• Coarsely Integrated Operand Scanning (CIOS): the outer loop con-
tains two inner loops, the first one computing the current partial
product (as in the normal multiplication algorithm) p̄ = ā · bi.
Then the second inner loop applies the Montgomery reduction to
the partial product.

• Finely Integrated Operand Scanning (FIOS): Montgomery reduc-
tion is integrated in the multiplication inner loop, i.e. each partial
product component is reduced as soon as it is computed. The
approach is taken by Algorithm 4 below.

For the customized GPU-like processor, we focused our efforts on
the FIOS algorithm which, in general, offers more opportunities of opti-
mization and fits our main goal since it concentrates all the computation
in the inner loop. We recall from the FIOS algorithm that in the in-
ner loop, the very first iteration differs from the subsequent ones only
in that it computes the quotient q, while all other operations are the
same. Figure 2.3 shows a schematic view of the first iteration of the
inner loop, while Figure 2.4 show the subsequent iteration. Figure 2.5,

2.3. FROM THE ALGORITHMTO THEGPU-LIKE DATAPATH45

Algorithm 4 FIOS Montgomery multiplication.

1: P ← 0
2: for i← 0 .. M − 1 do

3: (t′h, tl)← a0 · bi + p[0]
4: q ← tl ·m

′
0 mod 2w

5: (t′′h, tl)← m[0] · q + tl
6: for j ← 1 .. M − 1 do

7: (t′h, tl)← a[j] · b[i] + t′h + t′′h
8: (t′′h, tl)← m[j] · q + p[j] + tl
9: p[j − 1]← tl

10: end for

11: (t′h, tl)← p[M] + t′h + t′′h
12: p[s− 1]← tl
13: p[s]← t′h
14: end for

15: if p ≥ m then

16: p← p−m
17: end if

a[0] · b[i] + p[0]

tl

m′[0]

q

m[0] · q + tl

t′h

t′′h tl

Figure 2.3: Inner loop: first iteration

46 Modular Multiplication on GPU

a[j] · b[i] + t′h + t′′h

tl

m[j] · q + tl + p[j]

t′h

t′′h p[j − 1]

t′′h t′h

Figure 2.4: Inner loop: other iterations

a[1] · b[i] + t′h + t′′h

tl

m[j] · q + tl + p[j]

t′h

t′′h p[0]

a[0] · b[i] + p[0]

tl

m′[0]

q

m[0] · q + tl

t′h

t′′h tl

a[2] · b[i] + t′h + t′′h

tl

m[j] · q + tl + p[j]

t′h

t′′h p[1]

Figure 2.5: Inner loop iterations

2.3. FROM THE ALGORITHMTO THEGPU-LIKE DATAPATH47

instead, highlights the close data dependencies between iterations of the

Instruction Fetch

Decode

Thread Scheduler

Operand Fetch

MAC ALU

Writeback

Vec-RF

Scal-RF

R
ol
lb
ac
k
co
n
tr
ol
le
r

T
h
re
ad

co
n
tr
ol
le
r

Funtional units

(Montgomery)

PC 1

PC 2

PC N

T
h
re

a
d

M
a
sk

I-Cache

Thread
selector

F
IF

O

F
IF

O

F
IF

O

S
c
o
re

b
o
a
rd

RR Scheduler

F
IF

O

F
IF

O

F
IF

O

RR Scheduler

MEM

C
ac
h
e
co
n
tr
ol
le
r

L
a
n
e
M

L
a
n
e
1

L
a
n
e
2

L
a
n
e
M

L
a
n
e
1

L
a
n
e
2

L
a
n
e
M

L
a
n
e
1

L
a
n
e
2

(Op1, Op2, Op3, Lane mask)

Figure 2.6: GPU-like pipeline. Only the functional units of interest are
shown.

48 Modular Multiplication on GPU

inner loop.

Besides the selection of the algorithm, therefore, we needed to ad-
dress a number of additional design choices to meet our objective of pro-
viding acceleration support for Montgomery multiplication in the GPU
datapath. These included:

• Data dependencies and access patterns;

• Data movement and bandwidth;

• Width and number of lanes;

• Predicated execution;

• Integration of the Montgomery unit;

• Definition of an extended Instruction Set.

These considerations led us to the extended SIMD MAC unit shown
in Figure 2.7.

2.3.3 Data dependencies and access patterns

In order to parallelize the internal loop of the algorithm, we needed
to remove the data dependencies between subsequent iterations. Such
dependencies consist in vectors H ′ and H ′′. We decided to postpone
their sum to the beginning of the next iteration. This does not affect
the correct operation of the algorithm. As shown in Figure 2.7, vectors
H ′ and H ′′ are stored and internally propagated to be summed in the
next Montgomery instruction. In the actual pipeline implementation,
H ′ and H ′′ are generated in a way enabling the next instruction to be
issued immediately rather than wait for the previous one to complete.

2.3.4 Data movement and bandwidth

Our extended MAC unit requires that several input operands produce
several results, which easily exceed the data bandwidth available in our
GPU core. To balance the data movement across GPU-like datapath, we
chose to partition input/output operands into two groups, one stored in
the regular SIMD register file, the other half stored in registers internal
to the MAC unit. Such partitioning is shown in Table 2.1.

2.3. FROM THE ALGORITHMTO THEGPU-LIKE DATAPATH49

Table 2.1: Operand type and location.

Operand Type Storage

a Vector External
b Scalar External
m Vector Internal
p Vector External
m′ Scalar Internal
H ′ Vector Internal
H ′′ Vector Internal

a[1] · b[i]+H ′+H ′′+p[1]

L[1]

m[1] · q + L[1]

H ′

k[1]

H ′′

k [1]
q[1]

a[0] · b[i] + p[0]

L[0]

m′[0]

q

m[0] · q + L[0]

H ′

k[0]

H ′′

k [0]
q[0]

a[N−1]·b[i]+H ′+H ′′+p[N−1]

L[N−1]

m[N−1] · q + L[N−1]

H ′

k[N−1]

H ′′

k [N−1]

q[N−1]

H ′′

k−1H ′

k−1H ′′

k−1H ′

k−1H ′′

k−1H ′

k−1

a bp

Figure 2.7: Montgomery unit architecture.

We modified our GPU pipeline, in particular the Operand Fetch and
Writeback stages, in order to be able to read three operands and write
two results. Few modifications were needed since we already had two
separated vector and scalar register files, which makes it feasible to read
from two vector ports and one scalar port at a time (the second scalar
port is reserved for reading the execution mask). For the same reason,
we can write a vector and a scalar at the same time. Since our register-
register instruction format only supports two source registers and one
destination, the additional source and destination operand is an implicit
scalar register.

50 Modular Multiplication on GPU

2.3.5 Width and number of lanes

Although GPUs are basically SIMD processors, they usually lack the
ability to configure the number of lanes and word width (e.g. 4×32 bits
or 2× 16 bits) as in CPU SIMD extensions. In GPUs, there is usually a
fixed number of lanes with a fixed word length (32 or 64 bits). In Mont-
gomery multiplication software implementations, a major concern is the
choice of the component bit width and how it correlates to the proces-
sor word width. This choice is important to accomodate for high order
components generated by multiplications and carry/borrow values gen-
erated by additions/subtractions. We chose to keep a fixed word width
and manage high-order components generated by MAC instructions by
storing them in internal registers. For additions/subtractions, we intro-
duced ad hoc instructions for extended arithmetic. (More details are
given below.)

2.3.6 Predicated execution

Having a fixed number of lanes makes it possible to have predicated
execution at a lane level, by using lane masks. This is very common in
modern GPUs, since it allows emulating the execution of scalar threads
by mapping each of them to a lane and creating a SIMD thread (see
NVIDIA CUDA threads). In graphics applications, each scalar thread
is normally a pixel or vertex shader. Lane masks allow, for example,
emulating divergence among threads in if-else constructs. In our GPU-
like core, the lane mask is stored in an implicit fixed scalar register and
each vector instruction specifies if it is masked or not. An example of
this masked execution is showed in Figure 2.2.

We use masking to access specific lane subsets, especially during
Carry Recovery and Final Subtraction.

2.3.7 Integration of the Montgomery unit

The MAC unit extended for Montgomery multiplication is made up of
three macro-stages: the first one computes the current partial product,
summing also vectors H ′ and H ′′ from the previous iteration. This
stage is made up of an array of extended Multiply-and-Add units, each
capable of computing the function res = a · b + c + d + e. The second
stage involves only computing q using a half-precision multiplier on the
first lane, while the other lanes have just delay registers to keep results

2.4. DETAILS OF THE MONTGOMERY FUNCTIONALUNIT51

aligned. The last stage is an array of Multiply-and-Add units, which
apply the reduction formula res = q · m + l in every lane, where l is
the lower order component from the first stage. Figure 2.7 summarizes
the above description, highlighting the unit external interface with the
GPU-like pipeline, namely the arrows crossing the dashed box. The unit
has a latency of 13 clock cycles and is perfectly pipelined.

2.3.8 Definition of an extended Instruction Set

All the above features must be exposed to the programmers through the
processor ISA to let them write the complete Montgomery multiplication
code based on the hardware acceleration facility. We therefore extended
our GPU ISA with the instructions presented in Table 2.2. In addition
to the ones listed in the table, we also make wide use of the SHUFFLE
instruction, which was already available in our GPU-like core, as in most
GPUs.

2.4 Details of the Montgomery functional unit

2.4.1 Data arrangement

For the correct operation of the algorithm, operand components should
be arranged in a proper fashion. Assume we have 256-bit operands and
that our SIMD units have four lanes of 32 bits. Then, each operand
will have eight components and will occupy two vector registers. Their
contents will be denoted by (3, 2, 1, 0) and (7, 6, 5, 4), where each index
represents the weight of each component with respect to the Montgomery
radix 232. The first Montgomery operation will involve as operands the
vector register A(3, 2, 1, 0) and scalar register B(0), the partial prod-
uct P (3, 2, 1, 0), as well as M(3, 2, 1, 0). The outputs are lower order
L(3, 2, 1, 0) and higher orderH(4, 3, 2, 1) components of the updated par-
tial product. The first ones are stored externally in register P (3, 2, 1, 0)
while the second ones are stored internally in the unit. The last ones
should then be accumulated in the next Montgomery operation, but this
operation would involve the second halves of operands A, P , and M ,
namely components (7, 6, 5, 4), which have incompatible weights w.r.t
internal register components. It is therefore convenient to arrange A, P ,
andM operands in an interleaved fashion, as shown in Figure 2.8. In or-
der to achieve such data arrangement, we make use of the INTLVL and

52 Modular Multiplication on GPU

0123

4567

0246

1357

INTLVL

INTLVH

Figure 2.8: Data interleaving using INTLVL and INTLVH instructions
(case of operands occupying two registers).

0123

4567

04812

15913

891011

12131415

261014

371115

Figure 2.9: Data interleaving using INTLVL and INTLVH instructions
(case of operands occupying four registers).

INTLVH instructions, already presented in Table 2.2. The effect of these
instructions is shown in Figure 2.8, in the case of each operand occupying
two registers. Figure 2.9 instead shows data arrangement for operands
occupying four registers. At the end of the algorithm, the result will be
in interleaved form, so it will be de-interleaved using DEINTLVL and
DEINTLVH instructions.

2.4.2 Carry-less multiplication

This stage is carried out by scanning each component of operand b and
computing the corresponding partial product plus Montgomery reduc-
tion. Each of such iterations is made up of a sequence of one MONT1
instruction and zero or more MONT2 instructions, according to how
many registers each operand occupies. MONT1 and MONT2 instruc-
tions require four input operands (A, B, P , and M) but, as mentioned
in the previous section, we can supply only three of them. Therefore,
before each of these instructions, an internal register is loaded with the
current portion of modulusM by using instruction LOADM. Figure 2.10
shows one iteration together with the data arrangement, as previously
discussed. Component 0 is always equal to zero, as expected by Mont-

2.4. DETAILS OF THE MONTGOMERY FUNCTIONALUNIT53

A0·B0+P0+q·M0A2·B0+P2+q·M2

LHH LH L

LHLHLH

MONT1

MONT2

A6·B0+P6+q·M6

A1·B0+P1+q·M1A3·B0+P3+q·M3A7·B0+P7+q·M7

Figure 2.10: First iteration of carry less multiplication.

A0·B1+P1+q·M0A2·B1+P3+q·M2

LHH LH L

LHLHLH

MONT1

MONT2

A6·B1+P7+q·M6

A1·B1+P2+q·M1A3·B1+P4+q·M3A7·B1+q·M7

Figure 2.11: Second iteration of carry less multiplication.

gomery algorithm. Output vectors will be used in the next iteration
as operand p, but in a circular shift order, e.g., P (6, 4, 2, 0) is used as
P (0, 6, 4, 2). As an example, Figure 2.11 shows the second iteration.
High order components, stored in registers H ′ and H ′′, are propagated
internally between subsequent Montgomery instructions, but carry is not
propagated through all components. Using a Carry Save-like approach,
such propagation is postponed to the Carry Recovery stage. The last
instruction in each iteration generates higher order components unsuit-
able to be summed in the first instruction of the next iteration (in the
example of Figure 2.10, they have weights (8, 6, 4, 2)). Internal registers
H ′ and H ′′ have then to be stored in the regular SIMD register file and
retrieved when executing an iteration starting with proper component
weights. This is achieved by using instructions LOADH, STOH1 and
STOH2, listed in Table 2.2.

2.4.3 Carry recovery and final subtraction

In order to generate the correct result carries have to be propagated
through all the components of the product result. This is achieved by us-

54 Modular Multiplication on GPU

ing instructions for extended arithmetic, namely ADDC (see Table 2.2),
which support the sum of input carries, stored in an implicit scalar reg-
ister, and generation of output carries, which can themselves be used
as input in a subsequent ADDC instruction. The final subtraction is
performed in a similar way, using SUBB instruction, which supports in-
put/output borrow bits. The final subtraction is always executed, which
ensures that the overall execution time is independent of the input data,
and its result is stored separately from Carry Recovery output. Pred-
icated MOVE instructions are used to store the final correct result in
constant time, according to the sign of the subtraction result.

2.4. DETAILS OF THE MONTGOMERY FUNCTIONALUNIT55

Opcode Pipeline Description

MONT1 MAC Compute partial product and
apply Montgomery reduction.
Compute q. To be used only
at the beginning of each iter-
ation.

MONT2 MAC Compute partial product and
apply Montgomery reduction.
Do not compute q. To be used
after MONT1 to process other
operand components.

STOH1 MAC Read MAC internal register
H ′.

STOH2 MAC Read MAC internal register
H ′′.

LOADH MAC Load MAC internal register
H ′ and H ′′.

LOADM MAC Load MAC internal register
M (modulus) and MP (m′ =
−m−1 mod 232).

INTLVL ALU Interleave lanes of the
operands. Return the lanes
in even positions.

INTLVH ALU Interleave lanes of the
operands. Return the lanes
in odd positions.

DEINTLVL ALU De-interleave lanes of the
operands. Return low order
lanes.

DEINTLVH ALU De-interleave lanes of the
operands. Return high order
lanes.

ADDC ALU Sum the first two operands
and the carry contained in the
third operand. Return the
sum as first result and the
generated carry as the second
result.

SUBB ALU Subtract from the first
operand the second operand
and the borrow contained in
the third operand. Return
the difference as the first
result and the generated
borrow as the second result.

Table 2.2: Extended ISA to support Montgomery multiplication.

Chapter 3

AES extensions for GPU

I
n 1997 the National Institute for Standards and Technology publishes
a request for proposal to select a new symmetric cipher, in order

to supersede the old DES. Of the five finalists, NIST chose in 2000 the
Rijndael cipher, which is actually a family of ciphers, among which three
where standardized [54], all with a block size of 128 bits and with key
size of 128, 192, 256 bits.

3.1 Algorithm

Algorithm 5 AES encryption algorithm [54]

1: state← state⊕ k0
2: for i← 1 .. Nr − 1 do

3: state← SubBytes(state)
4: state← ShiftRows(state)
5: state←MixColumns(state)
6: state← state⊕ ki
7: end for

8: state← SubBytes(state)
9: state← ShiftRows(state)

10: state← state⊕ kNr

The direct cipher algorithm is shown in 5. Nr is the number of
rounds, that, for AES128, AES192 and AES256 is respectively, 10, 12
and 14. k0, ..., kNr are the round keys.

57

58 CHAPTER 3. AES EXTENSIONS FOR GPU

Summarizing, the operations needed in each round are

• Byte sustitution

• Row shift

• Column mixing

• Key Xor-ing

3.2 Architecture

In order to implement AES support in the GPU core, we explored
two possible approaches: a first implementation, that we call Resource-
friendly, tried to exploit hardware facilities already present in the core
in order to minimize the requirement of additional hardware resources
required. A second implementation, using completely dedicated func-
tional unit, was design to achieve better performances at the cost of
more hardware resources usage.

3.2.1 Resource-friendly implementation

Data arrangement: according to the AES algorithm, the AES 16 byte
block is arranged in the 4x4 matrix column-wise. In most implementa-
tion each 32 bit word (or a lane in a vector machine) corresponds to a
column. In our implementation, we chose that each lane correspond to
a row.

S4,4 =

s1 s5 s9 s13
s2 s6 s10 s14
s3 s7 s11 s15
s4 s8 s12 s16

(3.1)

Byte substitution

As defined by the AES NIST standard [54], the byte substitution oper-
ation is performed by taking the multiplicative inverse in the finite field
GF(28) of each byte in the state matrix. The element 0 (zero), which
does not have a multiplicative inverse, maps to itself.

3.2. ARCHITECTURE 59

lane 3 lane 2

s16 s12 s8 s4 s15 s11 s7 s3

lane 1 lane 0

s14 s10 s6 s2 s13 s9 s5 s1

Table 3.1: Data arrangement in vector register

Then compute the affine transformation: b′i = bi ⊕ b(i+4) mod 8 ⊕

b(i+5) mod 8⊕ b(i+6) mod 8⊕ b(i+7) mod 8⊕ ci, where bi is the i
th bit of the

byte, while ci is the i
th bit of the constant 01100011.

Even though the byte substitution is a known and deterministic func-
tion and could be computed directly, it is more usual to compute it using
a look-up table. Such approach has the advantage to be adaptable to
different ciphers, where the substitution function could not be known
analytically (e.g. DES) or to complex to compute. We chose such ap-
proach and adapted it in order to exploit the ScratchPad Memory (SPM)
already present in our GPU pipeline. We recall that the look-up memory
approach has the disadvantage to require an high degree of parallelism
in memory access. This could be achieved by using multiple ports, but
a few can be physically achieved. The alternative is to duplicate the
look-up table, with an increase in resource usage

Our SPM is made up of several banks, where we suppose the the
number of bank access is at least equal to the number of available lanes.
This way, if a vector memory access is well aligned it will generate no
bank conflict and there will be no additional stall cycles.

In the following, we’ll suppose that the number of banks is at least
as much as the number of lanes.

Since each lane contains a row of the state matrix, that is four bytes,
four look-up instruction will be required to perform a complete byte
substitution. Each instruction will take into consideration one byte at
a time, using it to generate an address to access the SPM (Operand
Fetch II stage). The address generated is such that each lane access its
own bank. The output byte is written in the homologous position in the
destination register, using the Write Enable facility already present in
the baseline version of our GPU.

The four instructions will obviously write different byte positions
in the same destination register. This condition generates unnecessary

60 CHAPTER 3. AES EXTENSIONS FOR GPU

Write-after-Write hazards and, if source and destination registers are
the same, also Read-after-Write hazards. Since SPM access time are
long, latency stalls can be filled using multithread, but since we are con-
sidering also a scenario where few threads are used and/or latency, we
wanted to introduce an optimization to latency, but which also didn’t
require complex control logic, which would be against the GPU ap-
proach. The solution was to partly delegate the hazard control to the
software/programmer side. The programmer will specify in a bit of the
Look-up instruction if he desires the destination register to be annotated
in the scoreboard table. In the negative case, is up to him to manage
data dependencies.

For the ByteSubstitution application, only the last of the four look-
up instruction will annotate the destination register, so that false depen-
dencies between lookups will be removed, but a subsequent instruction
using the result (ColumnMix) will be stalled if necessary.

The correcteness is guaranteed by the fact the execution is in-
order, different thread don’t have any common register so interference
is not possible and each lookup will read/write a different byte in the
source/destination registers.

In our approach, there can never be any bank access conflict, so each
lookup operation will always take the minimun number of clock cycles
and, more importantly, it will take always constant time. Such property
is desirable in order to twart memory timing attacks.

Row shift

Figure 3.1 show the rotate stage of an AES round. Since we chose to
arrange the state matrix in a row wise fashion, we can perform such
operation using the classic circular shift instruction. Optimization.

Mix column

Dedicated special function unit. It includes a ”routing” stage which
mixes data from different lanes. Mix column acts column-wise and each
column is considered as a polynomial over GF(28). Each column is
muliplied modulo x4 + 1 by the constant polynomial a(x) = 3x3 + x2 +
x+2. Given the peculiar nature of such operation, we chose to implement
it with a dedicated unit. It whould be possible to implement it using a
software approach with standard instructions, but it would require too

3.2. ARCHITECTURE 61

Figure 3.1: Row rotate.

many instruction. With our choice of data arrangement, Column Mixing
requires to compute with data coming from different lanes, implying an
intense use of shuffle operations. Since we are already implementing a
dedicated functional unit, we chose to include into such unit the crossbar
logic in order manage the cross-lane data movements with a reduced
number of clock cycles.

AddRoundKey

Adding the round key requires just to Xor the round key with the current
intermediate ciphertext. Even though the XOR instruction is already
present, we chose to include such operation in the MixColumns stage,
in order to reduce the number of operations required per round.

3.2.2 Optimizations

We implemented some simple optimizations in order to get better per-
formances: firstly, we included the Row Shift, which corresponds to a
byte-level rotate operation, into second stage of Operand Fetch unit.
Such byte rotate function is used in the Mix Column instruction, before
actual mixing is performed. As we have alread said, we included the key
xor-ing inside the SFU implementing Mix Column. This didn’t cause

62 CHAPTER 3. AES EXTENSIONS FOR GPU

S1,1

S2,1

S3,1

S4,1

S1,2

S2,2

S3,2

S4,2

S1,3

S2,3

S3,3

S4,3

S1,4

S2,4

S3,4

S4,4

S′
1,1

S′
2,1

S′
3,1

S′
4,1

S1,2

S2,2

S3,2

S4,2

S1,3

S2,3

S3,3

S4,3

S1,4

S2,4

S3,4

S4,4

Figure 3.2: Column mixing stage.

a significant increase in latency, butjust a bit more resources are used
since the unit now uses two operands instead of just one.

3.2.3 Dedicated HW implementation

We design also a Special Function Unit dedicated entirely to AES en-
cryption, with a single instruction implementing all the round steps de-
scribed above. This was done in order to achieve the best performance.
The more important difference with the previous implementation, is the
inclusion in the SFU of dedicated memory blocks to use as lookup table
for Byte Substitution. The cost for the performance speed-up is an in-
crease in resource usage, which, as we’ll see in the chapter dedicated to
results, is not that significant.

3.2.4 Inverse cipher

The AES FIPS standard [54] presents a possible implementation of the
inverse cipher, where the round and algorithm structure is the same as
in the direct cipher, which is an advantage in software but especially in
hardware or hardware supported implementations. The Inverse Cipher

3.2. ARCHITECTURE 63

Instruction Fetch

Decode

Thread Scheduler

Operand Fetch I

SPM ALU

Writeback

Vec-RF
Scal-RF

R
ol
lb
ac
k
co
n
tr
ol
le
r

T
h
re
ad

co
n
tr
ol
le
r

Funtional units

PC 1

PC 2

PC N

T
h
re

a
d

M
a
sk

I-Cache

Thread
selector

F
IF

O

F
IF

O

F
IF

O

S
c
o
re

b
o
a
rd

RR Scheduler

F
IF

O

F
IF

O

F
IF

O

RR Scheduler

SFU

L
a
n
e
M

L
a
n
e
1

L
a
n
e
2

B
a
n
k
M

B
a
n
k
1

B
a
n
k
2

L
a
n
e
M

L
a
n
e
1

L
a
n
e
2

Operand Fetch II
Address/immediate prepare

Figure 3.3: GPU pipeline for resource-friendly AES implementation.

64 CHAPTER 3. AES EXTENSIONS FOR GPU

Algorithm 6 AES inverse cipher algorithm

1: state← state⊕ kNr

2: for i← Nr − 1 downto 1 do

3: state← InvSubBytes(state)
4: state← InvShiftRows(state)
5: state← InvMixColumns(state)
6: state← state⊕ ki
7: end for

8: state← InvSubBytes(state)
9: state← InvShiftRows(state)

10: state← state⊕ k0

algorithm, presented in Algorithm 6, stems from the observation that
SubBytes and ShiftRows commute and obviously so are the correspond-
ing inverse operations. Besides, the MixColumn transformation is linear
so we have that

MixColumnds(state⊕ ki) =MixColumns(state)⊕MixColumns(ki)
(3.2)

The same is valid for the inverse transformation. That means that
in the inverse cipher we can swap (commute) InvMixColumns and Ad-
dRoundKey if we modify the Key Scheduling to include the computing
of InvMixColumns. The resulting algorithm is shown in 6. The simi-
larity of direct and inverse cipher is helpful also in our implementation,
since the only thing to do is to invert each operation. For SubBytes, it
suffices to preload the SPM with the inverse look-up table. ShiftRows
is also easily inverted. MixColumn unit needs to implement the inverse
transformation represented by the multiplication modulo x4 + 1 by the
constant polynomial a−1(x) = 11x3 + 13x2 + 9x+ 14, while the routing
scheme among the lanes is the same.

Chapter 4

Experimental results

I
n this chapter we’ll summerize the result of the implementations re-
spectively for the Montgomery multiplication and AES-128 encryp-

tion.

4.1 Montgomery multiplication

Our GPU design presented in the chapter about Montgomery multiplica-
tion was implemented on a Xilinx Zynq-7030 SoC device (7z030fbg484-
1). The design was built on top of the GPU-like core provided by the
MANGO H2020 project, which is highly customizable in terms of param-
eters such as the number of lanes or hardware threads. We used a basic
setting of four lanes, four threads, and a word width of 32 bits in order
to simplify the comparison with other works. A higher number of lanes
is likely to provide more benefits in that it would enable a higher degree
of parallelism and improved amortization of the control logic overhead
over the functional unit area. The Montgomery MAC pipeline was syn-
thesized with a maximum frequency of 200 MHz, while the whole core
has a maximum frequency of 110 MHz. The critical paths involve the
cache controller in the processor, confirming that the customized unit
does not compromise the maximum frequency.

The design was described in System Verilog and functionally verified
through extensive simulations relying on the GMP library [55] to gen-
erate test vectors automatically. For the timing evaluation, we assume
that operands are already available in the register file while program
instructions are available in the instruction cache, similar to the works

65

66 CHAPTER 4. EXPERIMENTAL RESULTS

used here for comparisons, which do not take data access latencies into
account for the timing results. We wrote the software Montgomery
routine for the 256 × 256 and 512 × 512 multiplication, using low-level
assembly code1. The performance results are shown in Table 4.1. We
compared our solution against a recent work in the technical literature
demonstrating the use of SIMD instructions for Montgomery multipli-
cation, namely Seo et al. [52], presenting results for NEON extensions
in ARM Cortex-A9 and Cortex-A15 (both are multi-issue CPUs, but
A15 has two SIMD pipelines), as well as a recent work by Massolino
et al. [51] which instead relies on a pure hardware solution. The val-
ues reported for our implementation represent the average cycle count
per single Montgomery multiplication when all four threads are active.
Between parenthesis, we also indicate the cycle count for the case of a
single active thread.

256-bit MontMul 512-bit MontMul

Our GPU-like core 212 (634) 466 (1322)
[52] (A9) 658 2254
[52] (A15) 308 1485
[56] (A15) n/a 1408
[51] 328 1093

Table 4.1: Performance results (# cycles/multiplication).

As shown above, in the 256-bit case, our solution has only a slightly
higher clock count in the single thread case, mainly due to the long la-
tency of the MAC pipeline. On the other hand, in the multi-thread case,
such long latencies are hidden by interleaving the execution of multiple
threads. Indeed, the results are quite good even with just four threads.
For the 512-bit multiplication, even the single thread case becomes com-
petitive, since more independent Montgomery instructions are needed
per iteration, which can themselves hide the MAC latencies. As a fur-
ther comparison targeting larger operands, we considered F. Zheng et
al. [53]. They implement 1024-bit multiplication exploiting the floating
point pipeline on an NVIDIA GTX TITAN device. By normalizing their
result with respect to the clock frequency and the number of cores and

1The *** H2020 project also provides a full LLVM-based compiler toolchain. The
toolchain can be easily extended for new hardware instructions which can be invoked
from high-level C/C++ programs as intrinsics functions.

4.2. AES-128 ENCYPTION 67

lanes, we infer a cycle count of 5090 per multiplication, which is signifi-
cantly higher than the projected clock count of our customized GPU-like
core.

To provide some indication about the area overheads of our cus-
tomized extension, Table 4.2 shows the resource utilization in the base-
line and extended version along with the corresponding percentage in-
crease. The baseline version contains the following functional units:
integer ALU, Multiply-And-Accumulate unit, scratchpad memory, L1
instruction cache, L1 data cache controller and coherence controller.
There are two register files, a vector one and a scalar one, each contain-
ing 64 registers. The customized version extended the ALU and MAC
units with the support for the instructions listed in Table 2.2. In order

Baseline Extended ∆

Slice LUTs 24305 (30.9%) 27014 (34.4%) +11.1%
Slice Registers 30832 (19.6%) 35847 (22.8%) +16.3%
Block RAM Tile 76.5 (28.9%) 84.5 (31.9%) +10.4%
DSPs 16 (4%) 27 (6.7%) +68.8%

Table 4.2: Resource utilization for Montgomery extensions.

to assess performance vs. area trade-offs, we also wrote a version of the
256-bit Montgomery multiplication for the baseline core and measured
the average clock count in the multi-threaded case, which turned out to
be 558. That means that the resource overheads listed in Table 4.2 are
rewarded by a performance speed-up of 263%.

4.2 AES-128 encyption

For the verification of implementation of the AES-128 algorithm, we
followed the same approach described by the previous section. The pro-
totyping device is the same (Xilinx Zynq-7030) with the same parameter
setting for the GPU-like core. The results for the synthetized frequency
are the same as in the previous section. The software implementation of
the algorithm, using our ISA extensions, was hand-written in assembly,
both for the resource-friendly and dedicated unit version. Test vectors,
consisting of pairs of plaintext and ciphertext, were generated using
OpenSSL library. The design was thoroughly tested using simulations,
for both versions.

68 CHAPTER 4. EXPERIMENTAL RESULTS

Table 4.3 reports the performance of the AES128 encryption im-
plementation. The results are expressed as number of clock cycles per
plaintext byte. Each row refers to one of the two versions of AES exten-
sions we realized. Comparison is made against Intel AES-Ni extensions,
which currenty are among the most performing AES implementation.
Table 4.4 reports the area usage results, with reference to a base line
version of Nu+ core. Each delta column expresses the resource percent-
age increase between each extended version and the baseline version.
The first extended Nu+ version refers to the Resource Friendly one, the
second to the Dedicated HW version.

cycles/byte Our Intel AES NI

Resource friendly 4.87
1.3

Dedicated HW 0.84

Table 4.3: Performance results for AES extensions

Baseline Extended1 ∆1 Extended2 ∆2

Slice LUTs 21869 24920 +13.9% 24642 +12.7%
F7 Muxes 1410 1555 +10.3% 1413 +0.2%
F8 Muxes 9 33 +267% 16 +77.8%
Slice Registers 26795 28207 +5.3% 28490 +6.3%
Block RAM Tile 38.5 38.5 +0.0% 38.5 +0.0%
DSPs 0 0 +0.0% 0 +0.0%

Table 4.4: Resource utilization for AES extensions.

Conclusions

T
his thesis work presented an FPGA implementation of a dedi-
cated hardware accelerator for very long operand multiplication

as a basic building block of a homomorphic encryption processor. It de-
scribed the high-level architectural concept and implementation as well
as the experimental data collected from hardware synthesis.

Similarly it presented also a GPU-like processor with custom exten-
sions, targeting Montgomery multiplication and AES encryption as an
example of a performance-critical operation for a large class of crypto-
graphic workloads.

Indeed, the GPU-like paradigm can be regarded as a general ap-
proach to build application-specific hardware multi-threaded/vector pro-
cessors. Following the domain specific customization, such GPU-like ac-
celerators can be implemented as Application-Specific Instruction Pro-
cessors, and they could even be profitable for FPGA implementation, at
least in those cases where the customized hardware becomes the dominat
part, providing in both scenarios the key advantage of full programma-
bility and tight integration with higher-level software code.

Overall, the results point out the great potential posed by FPGA
technologies in the acceleration of compute-intensive cryptographic al-
gorithms.

69

Bibliography

[1] W. Wang and X. Huang. Fpga implementation of a large-number
multiplier for fully homomorphic encryption. ISCAS, pages 2589–
2592, 2013.

[2] Andrew Chi-Chih Yao. How to generate and exchange secrets.
27th Annual Symposium on Foundations of Computer Science (sfcs
1986), pages 162–167, 1986.

[3] Çetin K. Koç. Cryptographic Engineering. Springer Science & Busi-
ness Medi, 2008.

[4] D. Suzuki. How to maximize the potential of FPGA resources for
modular exponentiation. In Proceedings of the 9th international
workshop on Cryptographic Hardware and Embedded Systems, vol-
ume 4727 of LNCS, pages 272–288. Springer, 2007.

[5] G. de Meulenaer, F. Gosset, M. M. de Dormale, and J.-J.
Quisquater. Integer factorization based on elliptic curve method:
Towards better exploitation of reconfigurable hardware. In Proceed-
ings of the 15th Annual Symposium on Field-Programmable Custom
Computing Machines (FCCM) 2007, pages 197–206. IEEE, 2007.

[6] S. Ghosh, D. Mukhopadhyay, and D. Roychowdhury. High speed
flexible pairing cryptoprocessor on FPGA platform. In Proceedings
of the 4th international conference on Pairing-based cryptography,
pages 450–466. Springer-Verlag, 2010.

[7] T. Güneysu, T. Kasper, M. Novotný, C. Paar, and A. Rupp. Crypt-
analysis with COPACOBANA. IEEE Transactions on Computers,
57(11):1498–1513, 2008.

[8] Rivyera S3-5000, January 2011.

71

72 BIBLIOGRAPHY

[9] A. Cilardo and N. Mazzocca. Exploiting vulnerabilities in cryp-
tographic hash functions based on reconfigurable hardware. IEEE
Transactions on Information Forensics and Security, 8(5):810–820,
May 2013.

[10] A. Cilardo, M. Barbareschi, and A. Mazzeo. Secure distribution in-
frastructure for hardware digital contents. Computers Digital Tech-
niques, IET, 8(6):300–310, 2014.

[11] A. Cilardo, A. Mazzeo, L. Romano, and G.P. Saggese. An FPGA-
based key-store for improving the dependability of security services.
In Object-Oriented Real-Time Dependable Systems, 2005. WORDS
2005. 10th IEEE International Workshop on, pages 389–396, Feb
2005.

[12] Mario Barbareschi, Ermanno Battista, Antonino Mazzeo, and Srid-
har Venkatesan. Advancing WSN physical security adopting TPM-
based architectures. In Information Reuse and Integration (IRI),
2014 IEEE 15th International Conference on, pages 394–399. IEEE,
2014.

[13] Mario Barbareschi, Pierpaolo Bagnasco, and Antonino Mazzeo.
Supply voltage variation impact on Anderson PUF quality. In De-
sign & Technology of Integrated Systems in Nanoscale Era (DTIS),
2015 10th International Conference on, pages 1–6. IEEE, 2015.

[14] Yousef K. Sinjilawi, Mohammad Q. AL-Nabhan, and Emad A. Abu-
Shanab. Addressing security and privacy issues in Cloud Com-
puting. Journal of Emerging Technologies in Web Intelligence,
5(2):192–199, 2014.

[15] F. Moscato, F. Amato, A. Amato, and R. Aversa. Model-driven
engineering of cloud components in metamorp(h)osy. International
Journal of Grid and Utility Computing, 5(2):107–122, 2014.

[16] F. Amato, A. Mazzeo, V. Moscato, and A. Picariello. Exploit-
ing cloud technologies and context information for recommending
touristic paths. Studies in Computational Intelligence, 511:281–287,
2014.

[17] C. Gentry. A fully homomorphic encryption scheme. PhD thesis,
Stanford University, 2009.

BIBLIOGRAPHY 73

[18] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully
homomorphic encryption over the integers. EUROCRYPT, pages
24–43, 2010.

[19] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic en-
cryption from ring-lwe and security for key dependent messages.
CRYPTO, pages 505–524, 2011.

[20] Josh Benaloh and Dwight Tuinstra. Receipt-free secret-ballot elec-
tions (extended abstract). In STOC ’94 Proceedings of the twenty-
sixth annual ACM symposium on Theory of computing, pages 544–
553. ACM, 1994.

[21] Hugo Jonker, Sjouke Mauw, and Jun Pang. Privacy and verifiability
in voting systems: Methods, developments and trends. Computer
Science Review, 10(Supplement C):1 – 30, 2013.

[22] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge com-
plexity of interactive proof-systems. In STOC ’85 Proceedings of
the seventeenth annual ACM symposium on Theory of computing,
pages 291–304. ACM, 1985.

[23] Pascal Paillier. Public-Key Cryptosystems Based on Composite De-
gree Residuosity Classes, pages 223–238. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1999.

[24] Ronald L. Rivest, Len Adleman, and Michael L. Dertouzos. On
data banks and privacy homomorphisms. Foundations of Secure
Computation, 4:169–180, 1978.

[25] Taher El Gamal. A Public Key Cryptosystem and a Signature
Scheme Based on Discrete Logarithms. In Blakley G.R., Chaum
D. (eds) Advances in Cryptology. CRYPTO 1984. Lecture Notes in
Computer Science, vol 196. Springer, Berlin, Heidelberg, 1984.

[26] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J.
Comput. Syst. Sci., 28:270–299, 1984.

[27] Jean-Sébastien Coron, Avradip Mandal, David Naccache, and
Mehdi Tibouchi. Fully Homomorphic Encryption over the Integers
with Shorter Public Keys, pages 487–504. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011.

74 BIBLIOGRAPHY

[28] Jean-Sébastien Coron, David Naccache, and Mehdi Tibouchi. Pub-
lic Key Compression and Modulus Switching for Fully Homomor-
phic Encryption over the Integers, pages 446–464. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[29] C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic
encryption scheme. Proc. Advances in Cryptology-EUROCRYPT
2011, pages 129–148, 2011.

[30] C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of
the aes circuit. IACR Cryptology ePrint Archive, 2012:99, 2012.

[31] J.S. Coron, T. Lepoint, and M. Tibouchi. Batch fully homomor-
phic encryption over the integers. IACR Cryptology ePrint Archive,
2013:36, 2013.

[32] H. Perl, M. Brenner, and M. Smith. hcrypt, 2011.

[33] S. Halevi and V. Shoup. Helib, homomorphic encryption library,
2012.

[34] W. Wang, Y. Hu, L. Chen, X. Huang, and B. Sunar. Exploring the
feasibility of fully homomorphic encryption. 99:1, 2013.

[35] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and B. Sunar.
Accelerating fully homomorphic encryption using GPU. In High
Performance Extreme Computing (HPEC), 2012 IEEE Conference
on, pages 1–5, Sept 2012.

[36] Wei Wang, Yin Hu, Lianmu Chen, Xinming Huang, and B. Sunar.
Exploring the feasibility of fully homomorphic encryption. IEEE
Transactions on Computers, 64(3):698–706, 2015.

[37] Y. Doröz, E. öztürk, and B. Sunar. Evaluating the hardware perfor-
mance of a million-bit multiplier. Digital System Design (DSD),16th
Euromicro Conference on, 2013.

[38] Wei Wang, Xinming Huang, N. Emmart, and C. Weems. VLSI
design of a large-number multiplier for fully homomorphic encryp-
tion. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 22(9):1879–1887, 2014.

BIBLIOGRAPHY 75

[39] Y. Doröz, E. öztürk, and B. Sunar. Accelerating fully homomorphic
encryption in hardware. draft, Under Review, 2013.

[40] X. Cao, C. Moore, M. O’Neill, N. Hanley, and E. O’Sullivan. High
speed fully homomorphic encryption over the integers. Workshop
on Applied Homomorphic Cryptography, to appear, 2014.

[41] J.S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully ho-
momorphic encryption over the integers with shorter public keys.
CRYPTO, pages 487–504, 2011.

[42] J.S. Coron, D. Naccache, and M. Tibouchi. Public key compression
and modulus switching for fully homomorphic encryption over the
integers. EUROCRYPT, pages 446–464, 2012.

[43] James W. Cooley and John W. Tukey. An Algorithm for the Ma-
chine Calculation of Complex Fourier Series, volume 19 of Math-
ematics of Computation, pages 297–301. American Mathematical
Society, 1965.

[44] Kassem Kalach and J.P. David. Hardware implementation of large
number multiplication by fft with modular arithmetic. In 3rd Inter-
national IEEE Northeast Workshop on Circuits and Systems Con-
ference, NEWCAS 2005, volume 2005, pages 267 – 270, 07 2005.

[45] Jerome A. Solinas. Generalized Mersenne Prime, pages 509–510.
Springer US, Boston, MA, 2011.

[46] Niall Emmart and Charles C. Weems. High precision integer multi-
plication with a gpu. 2011 IEEE International Symposium on Par-
allel and Distributed Processing Workshops and Phd Forum, pages
1781–1787, 2011.

[47] P. L. Montgomery. Modular multiplication without trial division.
Mathematics of Computation, 44(170):519–521, Apr. 1985.

[48] Paul Barrett. Implementing the rivest shamir and adleman public
key encryption algorithm on a standard digital signal processor. In
Proceedings on Advances in cryptology—CRYPTO ’86, pages 311–
323, 1986.

[49] Zhe Liu and Johann Großschädl. New Speed Records for Mont-
gomery Modular Multiplication on 8-Bit AVR Microcontrollers.
IACR Cryptology ePrint Archive, 2013:882, 2013.

[50] Yatao Yang, Chao Wu, Zichen Li, and Junming Yang. Efficient
FPGA implementation of modular multiplication based on Mont-
gomery algorithm. Microprocessors and Microsystems - Embedded
Hardware Design, 47:209–215, 2016.

[51] Pedro Maat C. Massolino, Lejla Batina, Ricardo Chaves, and Nele
Mentens. Low Power Montgomery Modular Multiplication on Re-
configurable Systems. IACR Cryptology ePrint Archive, 2016:280,
2016.

[52] Hwajeong Seo, Zhe Liu, Johann Großschädl, Jongseok Choi, and
Howon Kim. Montgomery Modular Multiplication on ARM-NEON
Revisited. IACR Cryptology ePrint Archive, 2014:760, 2014.

[53] Fangyu Zheng, Wuqiong Pan, Jingqiang Lin, Jiwu Jing, and Yuan
Zhao. Exploiting the Floating-Point Computing Power of GPUs for
RSA. In Information Security - 17th International Conference, ISC
2014, pages 198–215, Oct. 2014.

[54] Advanced Encryption Standard. http://csrc.nist.gov/publications
/fips/fips197/fips-197.pdf.

[55] GNU Multiple Precision Arithmetic Library. https://gmplib.org/.
Accessed: 2017-09-15.

[56] Hwajeong Seo, Zhe Liu, Johann Großschädl, and Howon Kim. Ef-
ficient arithmetic on ARM-NEON and its application for high-
speed RSA implementation. Security and Communication Net-
works, 9:5401–5411, 2015.

